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ABSTRACT

Practical dynamic systems constantly face unpredictable fluctua-

tions and disturbances for which the Kalman filter has been shown to be

effective in estimating the states from the outputs corrupted by white

noises. This is the Kalman filtering problem. On the other hand,

the Linear regulator problem, which is the mathematical dual of the

Kalman filtering problem, plays an important role in modern optimal

control theory. Both problems can be formulated as quadratic synthesis

problems.

A geometric-series approach is used to approximate the expon-

entials of Hamiltonian matrices for the quadratic synthesis problems.

The approximants of the discretized transition matrices are then used

to construct piecewise-constant gains and piecewise time-varying gains

for approximating time-varying optimal gains and time-varying Kalman

gains. Simple and fast algorithms are developed and can be easily

implemented on a low cost minicomputer or microprocessor.

The proposed methods have been successfully applied to the

analysis of practical control systems.

Other new findings of this research are reported in the appendix.
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CHAPTER I

INTRODUCTION

1.1 Historical Review

The development of control theory has become one of the corner-

stones in modern technology. Classical control system design is gener-

ally a trial-and-error process in which various methods of analysis

such as Nyquist, Bode and Routh-Hurwitz criteria were used iteratively

to determine the design parameters of a deterministic system. During

the postwar development, control engineers were faced with several

problems which required a very stringent performance. Many of the control

processes they dealt with became extremely complex. For example, the

design of spacecraft attitude with minimum fuel expenditure requirement

is not applicable to the classical methods. Such a problem has led to

a new formulation of an optimal control system. This system is as much

a branch of applied mathematics as of control engineering. Methods of

design require sophisticated mathematical tools such as differential

g equations, calculus of variation and dynamic programming. The objective

of optimal control theory is to determine the control laws which will

make a system satisfy its physical constraints and at the same time

minimize the performance criteria. The practical applications of optimal

control ideas in the various space missions make the dream of investi-

gating the universe come true. In recent years, the rapid development

of powerful minicomputers and microprocessors makes the industrial

applications of optimal control systems popular, and they will undoubtedly

become increasingly important in the future. The linear regulator problem

and Kalman filter problem are reviewed as follows.
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1.2 Linear Regulator Problem

An optimal control problem can be illustrated in the following

fashion [1):

Given a system equation,

k(t) - f(x(t),u(t),t), (1-1a)

find an admissible control,u*(t),which causes the system to follow an

admissible trajectory,x*(t),that minimizes the performance measure,

j J - h(x(tf),tf) + g(x(t),u(t),t)dt. (l-lb)

u*(t) is called an optimal control and x*(t) an optimal trajectory.

If the system is linear and time-varying, its state equation

is:

(t) A(t)x(t) + B(t)u(t) , (l-2a)

where xeRn, ABRnxn, and ucR p  5

IO

The performance index becomes

J T + 1f TT
(tf)H x(tf) i t )Q(A)x()+uT(A)R(A)u(X)]d 

to0
I T + Z tO(1-2b) -

where H and Q are real, symmetric, positive semi-definite matrices,

and R is a real, symmetric, positive-definite matrix. The initial
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time,t0 , and the final timetfare specified, and u(t) and x(t) are

not constrained by any boundaries. This is called a linear regulator

problem. The speed control system of a turbine-generator set in a

power station, and the level control system of plate glass manufacturing

are examples of such problems since the generator speed and liquid

level need to be as near a constant as possible. The

Hamiltonian of the system (1-2) is:

H(x(t),u(t),J(t)Q(t)x(t) + u (t)R(t)u(t)

x+ J*T(x(t) ,t) [A(t)x(t)+B(t)u(t) ]. (1-3)

By use of the Hamilton-Jacobi-Bellman equation [2], a necessary condi-

tion for u(t) to minimize H is that

I
(x(t),u(t),J ,t) = 0 (1-4)

au x

From (1-3) we have

I4
!H (x(t),u(t),J*,t) " R(t)u~)B~) (x(t),t) •(I5

Solving (1-4) and (1-5) for u*(t) gives

u*(t) -R -(t)BT(t)J (x(t),t) • (1-6)

x

The minimum cost is of the form:!1
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j*(x(t),t) xT(t)K(t)x(t) , (1-7)

where K(t) is a real, symmetric, positive-definite matrix that is to

be determined. It can be shown that K(t) satisfies the Riccati equa-

tion ,

K(t) = -Q(t)-K(t)A(t)-A T (t)K(t)+K(t)B(t)R - (t)B T (t)K(t), (1-8a)

with boundary condition ,

K(tf) = H. (1-8b)

Substituting (1-7) into (1-6) yields

u*(t) = -R - (t)BT (t)K(t)x(t)

I = -L(t)x(t) •(i-9)

The block diagram for the linear regulator problem is shown in Fig. 1-1.

CONTROLLER - - - --- .. - A

-L( ) .Bt) fi T'I1

~A(t)!I.

F ,
IFIGURE 1-1. BLOCK DIAGRAM FOR LINEAR REGULATOR PROBLEMI! ________________-___________________________________-
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From (1-7) the linear regulator problem is to maintain the state vector

close to a constant without an excessive expenditure of control effort.

Such a property can be extended to the linear tracking problem, which

keeps the state vector following some specific function. An example of

this will be the control system for a radar antenna, whose axis is to

be kept aligned from the line of sight to an aircraft flying past with

constant angular velocity.

If we apply the optimal control u*(t), obtained in (1-9), the

optimal trajectory x*(t) will be

i*t A(x)x*(t)+B(t)U*(t)

•- A(t)-B(t)L(t)]x*(t)

[A(t)-B(t)R-1(t)T(t.)K(t)]x*(t)

whose poles are eigenvalues of A(t)+B(t)L(t).

For observable control systems, the performance index is often

regarded as a weighted measure of the output vector and control vector.

Assuming, without loss of generality, that the output vector is
4

y(t) =c(t)x(t) ,(-1

I
and the quadratic cost function is given by

I
IT Al t TA

1 T )+ 1if [YT ()(X (A+T(R(u(]d ;
J 2y (t f)Hy(tf)+1 Q )u(k)(~()d

fto0 (1-12)

I after substitution of (1-11) in (1-12), this yields
tA

!1
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1T T A

X (tf)C (tf) HC(tf)x(Lf)

ftf [ (X)CT(X) (X)C(X)x(lX)a T(X)R(X)u(X)]dX • (1-13)
2 f

Note that by choosing

T ^

H = C(tf)HC(tf) and (1-14a)

TA1Q(t) - C (t)Q(t)C(t) , (1-14b)

(1-13) and (1-2b) are exactly the same. The choice of H, Q and R in

I (1-12) determines a relative weighting of the various terms. Q, H

must be real, symmetric, positive semidefinite matrices and R must be a

Ireal symmetric positive definite matrix. Once the designer has speci-

fied Q, H and R, representing different weightings in (1-13), the

optimal closed-loop system will be

I
-*(t) - [A(t)-B(t)L(t)lx*(t) (1-15a)

y(t) - Cx(t) (1-15b)I
I

If the resulting transient response is unsatisfactory, the designer

may alter the weighting matrices, Q and R, and try again. The use o* /an

optimal observer to realize the optimal control law is discu~ed in

[2].I __

1.3 Kalman Filter Problem ,.

I In Section 1 we considered only iyst-ms whi':h were determin-I _ _
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istic, in the sense that all inputs could be specified exactly, and all

outputs could be measured with unlimited precision. These assumptions

are mathematically convenient and have led to many powerful and useful

theoretical developments. In practice, of course, they cannot always

be satisfied. Input and output transducers are subject to unpredict-

able fluctuations and disturbances, and communication channels are

corrupted by all manner of interference. Such uncertainties are

present in all physical systems and are usually referred to by the term,

noise. In some cases the noise is inconsequential, and a deterministic

analysis will suffice. In others, however, the effect of the noise is

too great to be ignored and it must be modeled explicitly. The process

of analysis and design of these systems needs to be modified. The most

commonly used model for this purpose is the stochastic system model.

Stochastic control theory was developed during the Second World

War to synthesize fire control systems and radar tracking systems. The

propounder of filtering and prediction theory (Wiener-Kolmogorov theory

[3]) play3 a very important role in the solution of stochastic optimal

control problem. Its disadvantage is that it requires the solution of

an integial equation (the Wiener-Hopf equation). In realistic problems

the Wiener-Hopf equation seldom has analytical solutions, and it is not

easy to solve the equation numerically. Nevertheless, the use of the

digital computer for both analysis and synthesis has profoundly influ-

enced the development of the theory. Kalman and Bucy [4], [5] made it

possible to solve prediction and filtering problems recursively, which

is ideally suitable for digital computers. The results of Kalman and

j Bucy can be applied, not only to the stationary processes, but also to

L.
I|
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nonstationary processes. Using the Kalman-Bucy theory, the covariance

of the estimation error is governed by a Riccati equation. The Kalman

gain (or optimal gain) can be obtained by solving an initial value

problem for the Riccati equation which is similar to the one encounter-

ed in the optimal control of a deterministic system with quadratic

performance index as discussed in Section 1. The state estimation

problem and the linear quadratic control problem are, in fact, mathe-

matical duals. This result is of great interest from both the

theoretical and the practical points of view. If one of the problems

is solved, we can easily obtain the solution of the other by invoking

this duality (see Chapter III).

Now consider a stochastic linear system of the following form:

x(t) - Fx(t)+Dw(t) (1-16a)

d(t) - Ix(t)+v(t) , (l-16b)

where FERq xq , DeR qx , LeRp xq , XR q , weR veRP and deRp . W(t) is call-

ed the input noise, v(t) is called the output noise, they are

assumed to have zero means and to be white, and

Etw(t)] - 0 (1-17a)

Efv(t)] - 0 (l-17b)

E[W(t)W (0] - Q6(t-T) (1-17c)

E[v(t)v (t)] = R6(t-T) (1-17d)



9

E[w(t)v (T)] = 0 (for all tT) . (l-17e)

Note that the differential equation in (1-16) is defined only if we

accept the notion of continuous-time white noise. In discrete-time

systems, white noise is well defined,and the problem does not arise.

The initial state of the system (1-16) at time,t0, is usually

assumed to be a random vector, x(t0) = x0 , with mean, E(x0 ), and co-

variance

Po M E{[x0 -E(x o )[xo-E(x 0 ) ]T }, (1-18)

which is also assumed to be uncorrelated with the noise processes w

and v.

Consider now the problem of estimating the state x(t) of (1-16)

at time t>to, using the noisy measurement data {d(t'): t <t'<t}. To

determine an estimate ,x(t) ,of x(t),it is common to form the state error

vector:

A

x(t) =x(t)-X(t), (1-19)

and then minimize the mean-square error,

T- 2 T- t)T

E[a x(t)] - E[a x(t) (t)a]

a TE[<(t)T (t) ]a, (1-20)

where a T(t) represents any linear combination of the state variables.
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It is assumed that

x(t o ) E[x(t 0 )] . (1-21)

The covariance of the estimation error is defined as

p(t) - E{(3 (t)-E(i(t)][R(t)-E(R(t)] T} (1-22)

and the estimator model is given by

x(t) - Fx(t)+K(t)[d(t)-Hx(t)] . (1-23)

Subtracting (1-23) from (1-16a) yields the differential equation for

the state estimator ,

x(t) Fi(t)+Dw(t)-K(t) [d(t)-Hx(t)]

= Fi(t)-K(t) [Hx(t)+v(t)-Hx(t) ]+Dw(t)

S[F-K(t)Hli(t)+DW(t)-K(t)v(t) .(1-24) i

From (1-19) and (1-21) it can be shown that

E[R(t)] 0 .(-5

Therefore, (1-22) and (1-20) may be rewritten as

p(t) Efx(t)- T()1 (1-26)



lTe) ]2 T
E a ic(O]= a p(t)a. (1-27)

It has been proved [6] that by choosing the gain parameter as

K(t) = -p(t)TR-  , (1-28)

the optimal estimation error covariance,p(t),is the symmetric, semi-

definite solution of a nonlinear, time-varying matrix differential

equation known as a Riccati equation,

= T T T -11-9
p(t) Fp(t)+p(t)F +DQD -p(t)H R Hp(t) (1-29)

I Ip(t 0) P 0  (1-30)

P is the covariance matrix of the initial state x0 and is given in

1 (1-18).

A

The estimate x(t) is unbiased since its averaged error (1-25)

is zero, and it is optimal in the sense that at each time,t, its mean-

square error is smaller than that achieved by any other linear esti-

mator. If we also make the fairly common assumption that the initial

state and the two noise processes satisfy Gaussian (or normal) prob-

SI ability distributions, then the mean-square error is less than that

achieved by any other estimator, linear or nonlinear.

, The block diagram for a stochastic state estimator problem is

shown in Fig. 1-2. Further discussions may be found in reference [7],

Iti
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[8], and [9].

K (t)

° I

'I-
F OW

L

FIGURE 1-2. BLOCK DIAGRAM FOR STOCHASTIC STATE ESTIMATION PROBLEM

}-



CHAPTER II

DISCRETIZATION OF CONTINUOUS-TIM SYSTEM MODEL

2.1 Reasons for Discretization

The accurate description of most practical systems often requires

high-order,continuous-time state equations. As a result, the simulation,

realization and design of these systems will need to find an explicit

solution of differential equations. For a linear, time-invariant system,

it is possible to find an analytic solution. However, if the solution

is required at many points (e.g., for graph plotting) and if the state

vector is at all large, it is exceedingly laborious if done manually.

A simpler and much more efficient way to compute the solution is to

convert the continuous-time system equation into discrete-time system

equations which can be easily implemented by using a digital computer

or a microprocessor. Yet finding an exact discrete-time state equation

representation is impractical for a large system. Approximation is

often used to reduce the computational burden.

2.2 Continuous-Time System Model and Discrete-Time System Model

Consider the system represented by the continuous-time state

equation:

x(t) * Ax(t)+Bu(t) (2-la)

x(0) x 0 . (2-1b)

The exact solution of (2-1) will be

13
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x M eAtx0 + f eA(t-)Bu(X)a, (2-2)
, 0

where eAt - '(t) is called the state transition matrix of the system.

For practical consideration [10], we are interested in stair-

Icase inputs, or

u(t) u(kT) u(k) (2-3)

i for k 0,1,2,3,...,

i and T a sampling period

I with kT<t<(k+l)T .

Substituting (2-3) into (2-2), we find

I k k-i
x(k) f (T)x(0) + I 0(k-J-l)Lu(j) , (2-4)

J-0

where i i
I1

At
x(kT) x(k)

x(kT+T) _ x(k+l)

(kT-jT+T) -- (kAj-1)

P k(T) = [t(T)]k the continuous-time state transition matrix

and
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4)(T) = e AT 1 1 i (AT) .(2-5)
j=o

By letting a - t-X, the L-matrix is

T -1

L -= eAaBda = T 1 jl 1 (AT)JB
0 J=O0+)

= [e AIJA -1B. (2-6)I

For ease in implementation and manipulation, we are interested

in representing a continuous-time state equation by a discrete-time

I state equation:

x*(k+l) = Dx*(k)+Eu(k) (2-7a)

x*(O) x(O) , (2-7b)

I where

x*(kT) 4 x*(k)=x(kT)

x*(kT+T) _ x*(k+l)=x(kT)

I
The solution of (2-7) is

k-1x*(k) Dkx(O) + k. Dk-J-iEu(j) • (2-8)

I (=O

I Comparing (2-4) and (2-8),we maintain that x*(k) will be equal to x(k) I

I
1.
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if we choose

I D = O(T) eAT (2-9a)

and E = [(T)-IAIB. (2-9b)

I
D is defined as the discrete-time state transition matrix.

2.3 Transition Matrix Approximation

From (2-5) we know that (P(T) is an infinite series whose exact

value is difficult to obtain when the dimension of A matrix is high.

I Approximated representation is thus required. A natural question is:

how accurately can we approximate O(T)? One popular method is to

truncate the infinite series, i.e.,

k~ (ATnI
(P(T j=02-0

When k = 1,2,3,4,5, (2-10) becomes

IPa(T) = I+AT (2-11a)

- I+AT + . (AT) (2-11b)

1 2 1 -c3 1
I = I+AT + T (AT) 2  31[(T + A) (2-110)IAT-(AT)2 +-1(AT)3 A)

2! 31 4

=I+AT + - (AT)2 + 3L.(AT) + k (AT) -+ l(AT)5

1 2 1 3 1 4 5

(2-11e)

I
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If k is sufficiently large, a satisfactory approximation may be

obtained. However, the approximation error may become serious if the

higher order terms in the infinite series have a greater influence on

the evaluation of P(T). Such a situation may occur when the number

of terms or the sampling period is not properly chosen. This kind

of shortcoming can be complemented by the geometric series technique

[11]. Now rewrite *(T) as

P(T) - AT

+AT + 1 (AT)2 +...+ (AT)+ + )(AT) 1

21AT+T (AT) I (j-,)I AT

+ 1 (AT)J+2 + ) (AT)J+ 3 +...+ 1 (AT)J+n
+ (j+2)1 (J+3)1 (j+n)I

+ ... (2-12)

Keeping the first (j+l) terms in the series of (2-12) and approximating

the other terms of the series by a geometric series with a weighting

factor (i/(jn.j!)) for the term (AT) 3 ~ rather than l/(j+n)l (=1/(J+n)

(J+n-l)...(j+l).j!) for the same term, we obtain a more accurate model:

J-1 i Ci19 + -,.x (AT)'i2-3a
P b(T) = ( ) (
bT L i--).i=O i=j 3 (j!)

0  (T + (AT) (AT)]-1 (2-13b)

J-1
- I - (AT)]-'[ ( i) (AT)i] (2-13c)

D bj (2-13d)= Dbj
iI
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for T < j/11AII

j - 1,2,3,...

Note that the second summation term in (2-13a) is a geometric series.

The subscript of Db in 2-13d) indicates that the value of the factor

j is to be used in the infinite series. For each Dbj, the correspond-

ing E j can be attained from (2-9b). The approximated modes of Dbj

and Ebj for j = 1,2,3,4,5 are listed as follows:

D hl =(-AT) - 1 (2-14a)

1 -1 1
Db2 = ( AT) (I+ AT) (2-14b)

AT) ( . x 1 (T 2)

Db3  (I 1 AT)-l(+ AT+ . (AT) (2-14c)

Db4  _ 1 - 3 2AT)- (+ AT+ _I (AT) 2+ _L (AT) 3) (2-14d)
D 1 -1 31 4

b5= (-1 AT)- (I+ A AT+ _ (AT)2+ 5 (AT)3+- 1 (AT)4),

(2-14e)

and

Eb = T(I-AT)-1B (2-15a)

1 -1
Eb2 = T(I- AT) B (2-15b)

Eb3 T(I- - AT)-I(1+ AT)B (2-15c)

Eb4 - T(I- AT)-'(I+ AT+ 1 (AT)2)B (2-15d)

Tt 1 1 3 1 2+ 1 (2-)
1b5 -AT)-(+ _ AT+ j (AT) + (AT) )B.b5 T AT) 10 1520(
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Given the continuous-time system matrix A and input maitrix B, the

approximated discrete-time system matrix D) and input matrix E. can
bj oj

be calculated by using (2-14) and (2-15). The roundoff errors between

the exact mode and the approximated mode increase as J jAj T increases.

In order to control these errors, we use a scaling and squaring tech-

nique. An alternative form of (2-9a) is:

e(' AT- = (e ATi) , (2-16a)

where T i - T/i i lt12,3,... .(2-16b)

From (2-5), we get

I0 jm0

O(T) -A~l fo !- (AT3.. (2-17a)
iWO ).(iI)

Th ifr at srie insid th brce of(2-17cb)bapoxmae

by either truncating the series as in (2-10) or applying a geometric

series approach as in (2-13). Consider first the case of truncating

the infinite series:

C(T) (AT)i] (2-18a)

j-0 (i )(j!
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1

+ [1+ (AT)i when k 1 (2-18b)

1 1 2

(I+-! (AT)+ 2 (AT)2]1 when k - 2 (2-18c)
21 (i)

Of course, the more terms of the Taylor series that are taken, the

better the approximation will be. The effect of scaling can be easily

seen by considering the case of i 1 and i = 2 in (2-18b) and (2-18c).

When i = 1 (i.e., no scaling is used),

0 c (T) - I+AT (2-19a)

I+AT+ _-L (AT) 2  (2-19b)
2 2

_I+AT+ 2! (AT)2+ 3 (AT)3  (2-19c)

when i - 2 (i.e., scaling is used),

(T) = I+AT+_l (AT) 2  (2-20a)
1 2+

I+AT+ -1 (AT) 1 (AT)3+ (AT) 4 (2-20b)

~ A)2+ -(A)3+ (AT)

- I+AT+ - (AT) (AT) + (AT)4+ (AT)5+ 1 (AT).

(2-20c)

Comparing (2-19a) and (2-.20a), we observe that both retain the first

two dominant terms of the Taylor series, but (2-20a) has an extra term,

2 2j (AT) /4,which is an approximation of the third term,(AT) /2!, of the

..........
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Taylor series. Therefore, (2-20a) is a better approximation than

(2-19a). In the same fashion, comparing (2-19b) and (2-20b), we find

that both equations have the first three terms of the Taylor series in

(2-5), but (2-20b) provides two more important terms, (AT) 3/8 and

(AT) 4/64,which are the approximations of the respective fourth and

fifth terms, ((AT) 3/6 and (AT) 4/24), of (2-5). From the above compari-

sons we conclude that (2-20) gives better approximations than (2-19)

does.

If we use a geometric series approach to find the value of the

series in the bracket of (2-17), 4(T) becomes

i
jd(T)  Z___( + k (AT) (2-21a)

=O (i )-(M!) £=j (i)'0 Ht)

$4(T) (AT) 9_________1

I(.T+ ( - ]Z 0 (i ATM ) ( ) AT) i (2-21b)

Q[1- 1 AT]-[ + J (AT)]1, (2-2c)I- J1 ( l(j).(91 )

for T < 'J/l AII (2-21d)

i= 1,2,3,... :

J - 1,2,3,... '

where f AII is a matrix norm and [1- (AT)]-l is a generalized geo-

metric series. Note that when i - 1, (I- (AT)] is a geometric series

an that in (2-13b). The approximated discrete transition matrix D and

IFA
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input matrix E, for i - 1 and j 1,2,3,4,5 are listed in Eqs. (2-14)

and (2-15). When i = 2, the D's and E's matrices for j = 1,2,3,4,5

will be:

D [,-AT+ . (AT)2]-l (2-22a)
dl 4

D 1 1 2-1 1 1 2
d2 = (I- i AT+ - (AT)2]-I[+ j AT+ (AT) 2 ] (2-22b)

Dd= [ ,AT+ 1  (AT)2 ]-1 [ 2 7 21 31 4

D3 [- AT -AT+-(AT)- (AT)+ 1 (AT)

(2-22c)

[I--AT+/AT(A4
64 -1[,+ .41AT 67 (A)2+ 36 (T3+ 18

Dd4  - -A1 - (AT) + " (AT) -i AT

1 5 16
+ I (AT)5+ 3 (AT)6 ]  (2-22d)1536 36864

AT 1 2- 4 31 233

D 1_[Ii AT+ __L (AT) 2 ]* [ I+ A AT+ 1 (AT) 2+ _.I_ (AT)3
d5 t 1 5 1005 1020

59 4+ 1 5+ 17 6AT 1

+--9O(AT) _I (AT)5+ 115200 (AT)+ 115200 (AT)7

480 80 ,

+ 1 (AT) 8 (2-22e)
3686400

and

dl 4 AT+ (AT)2]I (I_ ~A) 22a
1 1 2-1

Ed2 = TI- - AT+-i- (AT) - B (2-23b)
d21 1 1

Ed3  T[I- - AT+ 1 (AT)2] [I+ AT+ (AT)2+ 7  (AT)3]B

(2-23c)
d4 T " AT+ (AT) [I+ IAT+ (AT)2+-"g (AT) 3

1 4 1 1

(AT) +36 (AT(AT)5]B (2-234)
1536 36864.
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1 1 21 3 3 2 59 3

E5 T[I-! AT+ -U(A)2I-l[l+ 3 AT+ 3 (AT)2+ 59 (AT)3d5 5 0010 20 4800

1 4 17 5 1 6 1
+- (AT) +15200 (AT) 115200 (AT)6+3686400 (AT)]B

The boundary conditions for the choice of convergence of the

sampling period T in (2-13d) and (2-21d) are different from each other

by a factor of i. Therefore, by using the generalized geometric series,

one can use a larger sampling period as long as we use a larger scaling

factor i. This is an important property which makes possible the on-

line calculation by applying microcomputers or microprocessors, because

small computers exchange the price with the speed and capacity.

The approximation 4 d(T) in (2-21),not only retains the first (j+l)

dominant terms of the Taylor series in (2-5), but also approximates the

rest of that infinite series. Therefore the accuracy of 4)d(T) is much

better than that of 4C (T) in (2-18),which preserves the first few terms

(depending on how many terms we choose in the bracket), approximates

some terms thereafter, and truncates all higher order terms. For

example, when i - 1 and j - 2,

1 2Oc( =+AT + (AT) 2  22a

(P(T) = i(-- AT)-(I+ AT)

1 2 1 1413+
I+AT+ (AT)2+- (AT) -- (AT)4+ 1 (AT) 5+...

2 2. 1 2 3.1 24 1
(2-24b)

When i -2 and j -2,

!
!
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i 1 1 2]2

(c(T) - I+ AT+ (AT)

I+ (AT)2+ 1 (AT)3+ 1 (AT)4 (2-25a)

(T) - AT) 1(I+ _I AT) 2

11 1
=- [IATI (AT)+2 2 " )

-I+AT+- (AT) 2+ 1 (AT) 3+ _1- (AT) 4+ 4 16 (AT) 5+...

I(2-25b)
Rewriting (2-5) for the comparison of (2-24) and (2-25) with the exact

discrete transition matrix, $(T), we have:

1 2 1 3 4 1 5T)2 ( (AT) + (AT) + 4 1 (AT) +...

1 (2-26)

It is obvious from (2-24)-(2-26) that the first three dominant terms

I of all five equations are identical, and the coefficients of the remaining

terms in (2-24) and (2-25) compared with (2-26) give the conclusion

I that a better discrete-time state transition matrix can be constructed

by using the generalized geometric series rather than using the scaled

truncating method. o by

ATThe matrix 4)(T) can also be obtained by modifying e as

follows :

1 1_ iAT)_(-- AT

( = eAT  (e 2 (e ), (2-27)

-AT AT
i where e and e can be acquired by using the truncating model

in (2-10), or the geometric series model in (2-13). The corresponding

I discrete system matrices D and E are:II

'i u _ _n _ _n_ __i -. - -- - ...- - _ _ _ _ _ _ _
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D ' #e(T) = AT- t) [ (2-28a)
i=o (21).(jf) 1-0 (2 ).(i)

Ji

E [feT)-I]A-I B  -(AT)i]-I*

1=0 (21 )*(it)

INT[(j-l)/2] 
2

(AT)1  }B (2-28b)
1=0 (221) [(21+l) I

where INT[(J-1/2] represents the integer part of the real number (J-D)/2

and

f(T) ={ -- ij21-l (AT)'}-1,

2
1=0 (2 ).( () ( T) )

{ "-j-iqi-l) I (AT) i (2-29a)

1=0 (21) (j 2). (i!)

E [Pf(T)-I]A -B - T{ I (-l) [-1(- (AT)i}-i=0~ (2 () (T) *
1=0 (2')-(j )(1!)

1 - 2 (AT) 1}B.1-1 (2 ).0 (2). (it)

(2-29b)I For j =1,2,3,4,5, the approximate models are:

(- - AT)-I(I+ - AT) (2-30a)

D 2 U [I- AT+ I (AT)2]-l[,+ I AT+ I (AT)2 ] (2-30b)e2 1 1 2 1 1 1 2

D 3 = [I- . AT+ _ (AT) - 1 (AT)3]-I[+ I AT+ . (AT)2+ (AT) 3

(2-300)I I
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[,_. AT+ I (AT)2 1 (AT)3+ 1 (AT) I 9I+ AT

1 2+ _L)T) __L_ 2  (AT) () (2-30d)

[I I A7+I (AT)2  (AT) 31 (AT) 41 1 (AT)5]-1*

1 1 21 314 40

1 -(2-30e)

Eel T(I- i AT) B (2-31a)

E = T(I- 1 AT+ 1 ( B (2-31b)
e2 2T 8 A) '

' ~T[~ 3 .,2 1 3-3 1EBe3 2 AT+ 8 (AT) 2- T CAl) - I+2 0:1) JB tl-3c)I,
Ee4 T[I- - AT+ - (AT) 2._- (AT) 3+ I (AT)4] [I+L (AT) ]B

(2-31d)I E 1 21 AT31 41 5-

e5 T[I- - AT+ - (AT) 2-1 (AT) 3+ (AT)4  810 (AT)5]-I

[,+ _ (AT)2+ 1 (AT)4 B. (2-31e)

Note that (2-30) and (2-31) are obtained from (2-28). As for (2-29),

1 the D's and E's become:

i Dfl (I- - AT)-1(I+ - AT) (2-32a)

D 1 1i- 1 1I

f 2[I- AT+ - (AT)]-l[I+- AT+2 A)](2-32b)f2 2 16 2i1

Df3 = AT+ (AT) 2 - (AT) 3 -1[I+ _ AT+ 7  (AT) 2+ T (AT)3]
(2-32c)

I
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Df4 I AT+ 7 (AT) 384(AT) I+ 4-1[ AT
f4 2 + 64 3 8 15 6 4]

j_ (AT) 2+ (AT) + 1 (AT) 4 (2-32d)

Df5  (-I AT+23 (AT)2- 19 (AT) 3+ 13 (AT)4  1 (AT)53-1*f5 2 20(A0T)90 19200(A)-1

1 23 2+19 3+- 1(A 4+
[1+ 1 AT+ 2 (AT)2+ 1 (AT) 960 (AT)4+ 19 (AT)5

(2-32e)

and

Efl T(I- ! AT) B (2-33a)

1 1 2]-1
f - T[I-- AT+ 1 (AT) I B (2-33b)
f2 2 16

I E [ 2 T 72 (AT)2 I (AT)3 1 (1+ I- (AT)2 1B (2-33c)

1 7 2 5 2 5

Ef4  T[I- 2 AT+ L (AT)2  (AT)3+ (AT)4]I[I+_. (AT) lBA- 6 384 153 192

(2-33d)
1 23 2 19 3 13 4 i 5-1

Ef5 21TAT+ 200 (AT)2 19 (A)3+ 1 (AT)4 9200 (AT)51 1

[1+ 19 (AT)Z+ I (AT)4 IB (2-33e)

Comparing (2-30) and (2-32) with (2-11) and (2-14), we conclude that

the modified transition matrix in (2-27) gives a better result than the

original transition matrix in (2-5). In addition, the modified eAT

implies a bilinear representation for the transition matrix D. This

bilinearity is useful in solving problems with large and small eigen-

values.
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Furthermore, we put forward the best approximation for the

state transition matrix in (2-5):

S(T) e eAT 
( 2-34a)9

-1AT -AT
= (e 2(- e n] (2-34b)

Qd P n (2 -34c)

where

T T/n (2- 34d)

1j-1 iI~ 1j (AT)1j[I+ (--1) 0-1) (AT)i](-3e

1- (2 ) (i)-

P [1+ 14-~ (AT)][I+ 1 2 i 0(j)(i)i (AT) i] (2-34f)

na 2=- 1-,2,3,...) (

with T < (2.i-n)/IiAII. 
(2-34g)

I Equation (2-34) can be regarded as the scaling and squaring model f or (2-29a).Hence a larger sampling period can be used, and the accuracy is improved.

For convenience, we list some approximants (0 for j -1,2,3,4,5);

_LAT)()-5a

In2n2
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=2n L AT+ - (AT)2-1[+ 1 AT+1 (AT)
2 2n16n 2n 2i A)I16n 2  16n

(2-35b)

1 7 2 1 3-1 13 {- -AT+ -- (AT) (AT) I+ L AT3n2n 2 (A) 144n 3  2

+ 7 (AT) 2+ 1 (AT)3]}n (2-35c)

72n2 144n3

1 7 2 5 3 1 4-i4n {[I- -AT+ (AT)- 3 (AT)+ (AT)4 1*64n 384n 1536n

[+i7 2+ 5 3 i 4

[I+ AT+- (AT) 2 - (AT) 3+ (AT)4]} n

64n 384n 1536n (i (2-35d) I

lr 23 219 313) 4
5n 2{ -n AT+ 23 2(AT) 3 (AT)3+ 13 (AT)

200n2  1200n 9600n4

- (AT)5 ]-i[ I+-A 23
(A) 2n 1AT+ (AT)2+ 19 3 (AT)3+ 13 (AT)4

19200n5  200n2  1200n 9600n4

S+ 1 (AT) ]n (2-35e)
19200n5

Note that the coefficients of two mati.. polynomials in each Jn in

(2-35) are identical except for signs. As a result, Djn can be eval-

uated faster than other approximation methods, and the computational

error in evaluating the approximate transition matrix may be minimized.I
2.4 Summary

The above discussion may be summarized as follows:

1. The ecact transformation from continuous-time system (Eq. (2-1))

into discrete-time system (Eq. (2-7))uses the r' ation

D = #(T) = eAT

E (D-I)A-1B

_ _ _ _ __ _ _ _ _ __E_ _

_ _-
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under the assumption that the input is a piecewise constant in-

put (the case of piecewise linear input will be discussed in

Chapter IV).

2. Seven different approximations for *(T) are derived. P (T),

Dc (T) and e(T) in (2-10), (2-18) and (2-28a) respectively

use truncating method, whereas Ib(T), $d(T) and 4 f(T) in (2-13),

(2-21) and (2-29a) respectively use the geometric series

approach. D and Dd are obtained by scaling and squaring 'c da

and Db' while 0e and (D f are found from 0a and 0b by applying

(2-27).

3. 9(T) is the best approximant of $(T) since it has largest

convergent range, minimum computational error, and fastest

calculation speed. In addition, the peculiar bilinear matrix ex-

pansion format is particularly useful in solving a stiff

state-space equation [12] which has both large and small

eigenvalues for which the Runge-Kutta fourth-order integration

method [13] fails. This is due to the fact that the Runge-

Kutta method approximates the Taylor series matrix expansion

by taking the first five dominant terms only, whereas 0 (T)
g

uses, not only the first several dominant terms, but also an

infinite number of other approximate terms.I
4. Other approximation techniques for the transition matrix O(T)

can be found in [14 .

I



CHAPTER III

APPROXIMATED LINEAR REGULATOR AND KALMAN FILTER

3.1 Introduction

In Chapter I, a linear regulator problem has been illustrated as

one of the optimal control design techniques that have general appli-

cations in deterministic systems. A regulator problem is defined as

an optimal feedback control system that will drive the states or out-

puts to the neighborhood of the equilibrium conditions. However, most

real dynamic control systems have disturbances and measurement noises.

It is not possible, for example, to model a disturbance by an analytical

I function. The answer to the problem of modeling disturbances is to

f describe them as stochastic processes. The Kalman filter has been

shown to have applications in stochastic control problems [6,15] and

f is particularly effective in the estimation of system states contamin-

ated by white noise. One of the difficulties in the determination of

i the Kalman filter is the computational burden encountered in computing the

i filter error covariance matrix for use in obtaining the gains. Conse-

quently, approximation methods discussed in Chapter II are used to

obtain a suboptimal state estimation which can be easily implemented

on a low cost minicomputer or microprocessor.

I For the deterministic optimal linear regulator problem [Eq.

(1-2)], which is the mathematical dual of ehe optimal stochastic-state

estimation problem [Eq. (1-16)], Kleinman [16] et al. have proposed a

very elegant approach in solving the suboptimal linear regulator problem

by using piecewise-constant gains. Chen and Shiao [17] have devised a

Walsh function approach for developing a piecewise-constant gain to

31
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approximate the time-varying Kalman gain, while Rao [18] has improved

the computational speed of the Walsh function approach via the block-pulse

function technique. In this chapter the generalized geometric series

approach and scaling-squaring technique mentioned in Chapter II will

be used for developing piecewise-constant gains and piecewise-linear

gains for approximations of the optimal gains and Kalman gains in the

linear regulator problem and the state estimation problem, respectively.

Also, simple and fast algorithms are presented for the implementation

of these problems on a computer.

1 3.2 Time-Varying Optimal Gain

Rewriting the optimal linear regulator system in (1-2) as

follows:

i(t) - Ax(t) + Bu(t); x(t 0 ) = xo , (3-1)

I where x(t), u(t), A and B are vectors and matrices of approvriate

I dimensions. For a finite time tf, the quadratic loss function,

I~~I j ~ x(t)Qx(t)+U (t)Ru(t)]dt, (3-2a)
02 to

I is minimized using the optimal control law (1-9):

u (t) -L(t) x(t) = -- 1BT(t) (3-2b)

where the time-varying optimal gain is:

L(t) -RBTp(t) (3-2c)

. .l .............. ~l I II- I mi
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and the adjoint state variable A(t) is equal to

AM - p(t) x(t) (3-2d)

p(t' satisfies the following Hamiltonian matrix equation [19]:

[A~B~B1 fxci~M t (3-3a)

and the boundary conditions are specified as:

[(3-3b)

. P(tf 01

Instead of solving the time-varying optimal gain L(L) from a

Riccatl equation [20] by off-line computations, we can solve a linear

two-point-boundary-value problem [19] for the L(t). The procedures

are reviewed as follows:

The solution of (3-3) is:

[ xtl)xt)
X T A Irt

X I) (tt) II
110( t ' t 0 )  ( 12 (t ' t

0 ) X(t 0)

A AL )J(3-4a)
1L2 1 t't°) 0 22 (t't°) 0ct0

,~



34
where the continuous transition matrix

$(t,t) e N(t 0) (3-4b)

Partitioning *(t,t 0 ) and substituting t = tf gives:

X(tf ) (tf Vo)XW to)+ 41 (tf t ( o) ( J5)

Using (3-2d) and (3-3b), we find

~1AX(t 0) 22 (t f~to 021(tfpt 0 Wt 0). (3-6)

From (3-4a),

AX(t) 11 * (t,t o)X(to ) l2(t,tO0 MtO)

the r(tt't)re2(tf,tO)02(tfit 
) x(t (3-7a)

X(t) 4) ¢ (t,to)X(to)+022(t,tO) W( O

=,[21( 0tO0_22 t  0- 0

A A^e a I

therefore-)22(~ 0) 2 t~ 0) 1(ftO~xt (-b

I
p X~ )- [21(t,tO0).422 (t,tO0)' 22(tftO0) (V21 ( tf~to) ]

1 t t0 D12 t ,t 0) )2 tf t 1( f t0 -~ ) 3-8)
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Hence p(t) is found as:

A A A A 1 A

p(t) = 2 1 (t't 0)_0 2 2 (tt 0)P 2 2 (tf )to) 2 1 (tfPt 0)].

The time-varying optimal gain is

-T TA
L(t) = R7 B p(t), (3-9b)

and the optimal state trajectory is given in (3-7a).

3.3 Time-Varying Kalman Gain

Furthermore, we review the continuous stochastic-state estima-

tion problem. Consider the linear time-invariant continuous stochastic

system given as:

x(t) = Fx(t) + Dw(t) ; x(t 0 ) - x0  (3-10a)

d(t) -Hx(t) + v(0), (3-l0b)

where x~):q d(t)eRp, FE q~ , Dq ,pqW(t)eRX, v(t)ERP; w(t)

I and v(t) are zero mean stationary white noise processes having the

properties:

IE[W(t)w (t)] - Q6(t-T) Q > 0 (3-10c0

IE~v(t)v T(-E)] - (t-T) R > 0(31d
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E[w(t)V (T) 0 (3-10e)

The best linear least squares estimate of the state vector is given by

the stochastic state equation [Section 2 of Chapter I]:

x(t) Fx(t)+K(t) [d(t)-Hx(t)] (3-11a)

AX(to) = [x(t 0) ], (3-11b)
A

where x(t) is the estimated state and the Kalman gain is:

K(t) = i(t)HR71-  (3-11)

P(t) is the covariance of the estimation error.

Introduce the vector z defined as the solution of the differen-

tial equation:

z(t) -- FTz(t)-HTu(t) ; z(t 0) z0  (3-12)

then the estimation problem is equivalent to the problem of finding a

control signal for the dynamical system (3-12) which minimizLO the

quadratic performance index:

I zT(to) ( (tf [zT(t)DQDTz(t)+UT(t) Ru(T)]dt.

J 0 (3-13)

Consequently, the state estimation problem becomes the mathematical

dual of the optimal control problem,and the optimal control law is thus
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equal to

u(t) -R- l (t)t) -K (t)z(t). (3-14)

Similar tu (3-3a), we can form the following Hamiltonian matrix equation.

Z~t -FT HTR71HJ z(t) L I)
(t) L DQD T  k(t) A(t) -

with boundary conditions,

A(t 0 ) = (t 0 )Z(t 0 ) 
(3-15b)- (-lSc)

(t 0) - E{[x(t 0)-Ex(to D I[x(to0)_Ex(t 0) ) T},1 (3-15c)

and the adjoint state variable X(t) satisfies

XIt) = ( , (3-16)

where p(c) is the covariance matrix.

The solution of (3-15) is:

LD 1(t't0) 4 22 (tt 0 0
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where the continuous transition matrix is:

- H~(t,t O)(37b

'I(t,ct) = e (3-17b)

After partitioning the matrix in (3-17a) and using the relationship in

(3-15) and (3-16), we obtain:

I P (t) = (t'to)P(t O) ] [ll(tto)+*12(t'toP(t O) 
- .

(3-18a)

Note that (3-18a) is different from (3-9a). When tf in (3-13) is a

finite time, the time-varying Kalman gain is

I K(t) = P(t)HTRI (3-18b)

I Substituting (3-18) into (3-11) yields the optimally estimated state,

x(t).

3.4 Optimal Regulator and Kalman Filter Approximation

In Chapter II, several approximation methods for the transition

I matrix are discussed. The newest and probably the best one among them is

shown in (2-34). Since both (3-4b) and (3-17b) can be treated as tran-

sition matrices, and due to the duality of stochastic-state estimation

and deterministic optimal regulator, we can extend (2-34) to construct

a piecewise-constant gain and a piecewise time-varying gain for approxi-

jmating L(t) in (3-9b) and K(t) in (3-18b). As it shall be seen later,

the proposed method improves the accuracy and computational speed of

the existing methods [17,181, and the approximate gains obtained can be

I
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implemented on low-cost microprocessors or minicomputers for on-line

suboptimal control and approximate estimation [21,221 of a wide class

of systems.

If the exact transition matrices, c(t,t 0) in (3-4) and $(t,t 0 )

in (3-17), can be obtained by off-line computation, the exact time-

varying optimal gain L(t) in (3-9b) and the exact time-varying Kalman

gain K(t) in (3-18b) can be determined for optimal control and estima-

tion. Moreover, off-line computation can be achieved by using a huge

and expensive digital computer, but it may not be practical to imple-

ment it on a small and low cost minicomputer or microprocessor because

of its slow speed and limited capacity. For this reason, approximants

are often determined and implemented on a mini/micro computer for

on-line suboptimal control and approximate estimation. Chen and Hsiao

(17] approximated 4(t,t 0 ), but not 4(t,t0 ), via a Walsh function approach,

while Rao (18] approximated 0(t,t0 ) via a block-pulse function approach.

Considering practical engineering constraints, we choose the modified

geometric series approach with scaling and squaring, which is a class

of Pade approximation method [14], to approximate both (t,t0 ) and

(t't 0 ). This method will improve the accuracy and computational speed

of the existing methods [17,18].

A general continuous-time state equation,

Y(t) - MY(t) ; Y(t 0 ) - Y(O), (3-19a)

is used to represent (3-3a) and (3-15a). The solution of (3-19a) is

Y(t) - eMt Y(O) 4'(t) Y(O) , (3-19b)
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where $(t)(= e t ] is a continuous transition matrix. To use the recur-

sive feature of a discrete-time formulation and programmable micro-

processors or minicomputers, the continuous state equation in (3-19a)

is often converted to an equivalent discrete-time model as:

Y(KT+T) = GY(KT) ; Y(t0) = Y(0). (3-20a)

Thus, the discrete-time solution can be rapidly determined as:

Y(KT) = GK Y(0), (3-20b)

MTAwhere G eMT d(T) (3-20c)

W(t) K(t) e MTIK = GK  (3-20d)

t - KT, K = 0,1,2,.... (3-20e)

T(= t/K) is the sampling period and $d(T) is a discrete transition

matrix. If off-line computations of Pd(T) are not available or not

desired (for example, the self-tuning control problem [23] and the

adaptive control problem (21,22]), and the on-line suboptimal control

or approximated estimation using a microprocessor or a minicomputer

is permissible, then the Pd(T) is often approximated by a matrix poly-

nomial or a rational matrix polynomial. Once the approximation of G

has been determined, the approximate discretized solution of (3-19)

becomes:

Yd(KT) Gd(O) ; d() Y(O), (3-21a)
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where

G 4 $d(T) (3-21b)

Yd(KT) = Y(t) at t = KT (3-21c)

Using (2-34), we get the best approximation of G:

-11
MT MT-I 1MTn

G e {[= e 2 3- (e 2 n}

-n nQjn P = Gin (3-22a)

for j 1,2,...

n = 1,2,...

where T = T/n

1 MT] q (-l i )i i)MT)i] (3-22)
QJn I [2q (2)(j)(n) [Ii2q i-1 (2 )(j)(it)(n i)

A I 1 M I+Jl-(j-') (MTr) (32c
Pjn [12q+ (2)(j)(n) MT][ 12q+ Z i)(j)(i!)(ni)

T < (2jn)/IIMII. (3-22d)

I
12q is a 2qx2q identity matrix, j IMJI is a matrix norm of M and the

rational matrix polynomial [- - is a geometric series. Now
polyomil ~2q- 2jn

we shall investigate the accuracy and computational speed of the pro-

posed method compared with other existing methods. When n 1, Gin

m m -m - ---- ---- --... . -
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(for j = 1,2,...) in (3-22a) are the approximations of the eMT obtained

by taking the first (j+2) dominant terms and an infinite number of the

other approximated terms of the Taylor series matrix expansion. For

example, when n = 1 and j - 1, GII is given by:

1 1 1
G [I 2 - MT II+ -MT] (3-23a)

1 2q- 2q2

3+M 1 (MT)2+ j (MT)i (3-23b)
2q 21J!3 2J~

i T < 2/11MII, (3-23c)

the exact Taylor series matrix expansion isI
MT1 2 1i

G eMT  I 2q+MT+ _L (MT)2+ [ (MT) j  (3-24)I j=3

Observe that the first three dominant terms in both (3-23b) and (3-24)

are identical and the remaining terms differ by their weighting factor

I 1/(2
J- l) in (3-23b) and l/(J!) in (3-24). Shieh [24] et al. have shown

that the discrete-time solution in (3-21), having G11 (-G) in (3-23), is

identical to the approximated solution of (3-19) obtained by using

fWalsh function approach [25] and the block-pulse function approach [12].

Since G is a special case of G n in (3-.2), the implication is that the

f gains designed via the existing methods [17,18] are the special cases

of the modified geometric series with the scaling and squaring method.

For practical implementation of the designed approximate opti-

mal gains and Kalman gains on a microprocessor, which needs a large

II
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sampling period due to its slower operation, a more sophisticated

equivalent model (G n an J>1 and/or n>l) is required. For instance,

if letting j=l and n>l in (3-22), we have:

G -n pn
GIn Qln in

= {[q1 - MT ]-l[I+2q+ MT]1n='{]2q- 2n 2q 2 n

1 1 +1
{[I2q- 2 MT]-l[2q+ .- MT[I} (3-25a)

T < 2n/I MII (3-25b)

or T < 2/IIMII. (3-25c)
n

Comparing (3-23c) and (3-25c), we observe that the samp'ing period T

in (3-23c) has been reduced to T (- Tin, n>l) in (3-25c). As a result,

the accuracy of the- approximation Gln in (3-25a) is better than that

of G in (3-23a). Thus, the proposed method has significantly reform-

ed the accuracy of the existing methods [17,18] for evaluating 'P(t,t 0 )

and L(t). Also, the range of convergence of the geometric series in

(3-25b) has been increased to n times that in (3-23b). From this ob-

servation we can conclude that a larger sampling period can be used

if a more sophisticated model is chosen. Furthermore, we see that both

G and Gin are in the bilinear matrix expansion format which can be

easily applied in solving a stiff state-space equation [12]. Equations,

(3-22b) and (3-22c), can be rewritten as follows:

Q (_)I(_i2 i +i)(MT).3]
jn 2q ( (3-26a)i-=1 (2i) 0j) (il) - (ni )
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A j Q i i
jn 1q + -(3-26b)

Note that each term in Qjn and Pin is equal except for signs. As a

result, Gjn can be evaluated faster than other classes of the Pade

approximation, and the computational errors in evaluating the approxi-

mate transition matrix may be minimized. These improvements are another

reason for choosing a geometric-series approach (a class of Pade

approximation approach [14]) for transition matrices approximation.

The G.n matrices for j =1,2,3,4,5 are shown in (2-35). Sub-

stituting any one of them into (3-19) yields an approximate discretized

transition matrix 4(t) at t = KT. Using this ((KT), we can determine

the approximate discretized L(t) in (3-9b) and K(t) in (3-18b). The

desired piecewise-constant, approximate optimal gain (L C(t)) and the

piecewise-constant, approximate Kalman gain (K (t)), derived from a

rectangular rule for continuous system control and estimation, are:

L PC(t) = L(JT) L(t) ; jT< t < (j+l)T, j = 0,l,2,...,m-l

(3-27a)

and

K PC(t) K(jT) K(t) ; jT < t < (j+l)T, j 0,1,2,...,m-l,

(3-27b)

where m(=tf/T) is the number of sub-intervals with sampling period T

and a finite t.me tf of interest. If a trapezoidal rule is applied,

the piecewise-constan gains are:
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1

L pc(t) -L(JT+T)+L(JT)] L(t), jT<t<(j+1)T, J 0,1,2,...,m-1

(3-28a)

and

K (t) = 1 (K(JT+T)+K(JT)] K(t) JT<t<(J+1)T, j - O,1,2,...,m-1.
PC 2

(3-28b)

To improve the accuracy of the approximate gains in (3-27) and (3-28),

I we use new piecewise time-varying gains such as:

L (t) = L(jT)+ 1 IL(jT+T)-L(jT)](t-jT) L(t) (3-29a)

andI
K (t) = K(jT)+ 1 [K(jT+T)-K(jT) ] (t-jT) K(t), (3-29b)
PtT

I where JT<t<(j+I)T and j = 0,1,2,...,m-1.

To reduce the number of piecewise gains [L PC(t), L pt(t), K C(t) and

I K pt(t)] from m to X, we further approximate the piecewise gains. The

average gain of L (t) in (3-27a) between the sampling period T*(-nT,

1 n>l) is:

! (J+l)n-i

(t) = l L(iT); jT*<t<(J+1)T*, j -0,,2,...,X-1,n i=jnj ~(3- 30a)

where tf = Uff,

I n m/n is the number of intervals with sampling period

I--
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T*(=nT) and n is the number of subintervals in each interval.

The average gain of L (t) in (3-28a) becomes:
PC

L+ (J+l)n-1
(t) EL(iT+T)+L(iT)]; JT*<t<(J+1)T*, J = O,1iC~t - n ,

(3-30b)

Moreover, the average gain of L (t) in (3-29a) is:pt

L t(t) = L(JT*)+ f- [f(JT*+T*)-L(JT*) ] (t-JT*), (3-30c)
Pt T* fT**)L T)

where f(JT*+T*) = 2L C(t)-L(JT*) (3-30d)

and JT*<t<(J+I)T* j -

In the same fashion, the average approximate Kalman gains between the

sampling period T*(=nT, n>l) become:

(j+l)n-l
(t - K(iT) (3-31a)

1 K~ct ) i(J~l)n-1

I [K(iT+T)+K(iT)] (3-31b)
Pi-jn

and K(t) K(JT*)+ 1 [g(JT*+T*)-K(JT*)] (t-JT*), (3-31c)I

where g(JT*+T*) - 2K +(t)-K(JT*) (3-31d)
PC

jT*<L<(j+1)T* , j 0,l,2,...,Z-l._ _ _ _ _ _ _ _ _ _ _
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The developed approximate optimal gains and approximate Kalman

gains in (3-27) to (3-31) can be implemented on the programmable digital

controller for on-iine suboptimal control and approximate estimation

of a system.

3.5 Examles

Now we shall investigate one deterministic problem and one

stochastic problem to see how the proposed method improves the result.

Example 1. Deterministic Control Problem

Since the state estimation problem is the dual of the deter-

ministic control problem, we can use Kleinman's deterministic system

[16], which has been solved by using piecewise-constant gains, as an

illustrative example to test the aforementioned method.

The dynamic equation is:

Sx(t) Ax('c) + Bu(t)

F-1  0
0 0 2 x(t)+L2 u(t). (3-32a)

I The initial conditions are:

x(O) -J (3-32b)

The quadratic lost function is:

I
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J 2 ft0 (XTQX+cURu)dt

22 2 -2 0
= 0 - -2 2 0 x+uT 2"u dt

0 00

f [ (xl-x 2 ) 2+u2]d"

The corresponding state and costate equations are:

I
XVY) (3-34)

where Y(t) [x(t) g(t)3T , A(t) - P(t) x(t) and P(tf) - 0. After sub-j stitution, the M matrix becomes

jA -BRlB T1IA J
-. 0 0 4 4 -2I 0 0 2 4 4 -2

0 -2 0 -2 -2 1
-2 2 0 1 0 0 (3-35)
2 -2 0 o 0 2

i 0 o 0 -2 0
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The linear control law u*(t) is thus equal to (Eq. (3-9b)]:

I u* (t) - -L(t)x(t)

= -RIB Tp(t)x(t). (3-36)

I The desired optimal state trajectory satisfies:

x*(t) - (A-BL)x*(t) ; x*(O) - X(O). (3-37)

Using (3-19)-(3-22), we obtain the approximate discrete state model of the

Icontinuous state model in (3-34) as:
I Y*[(J+l)T] - GY*(JT) ; Y*(O) - Y(O) (3-38)

I
where j = 0,1,2,...,m-1 and m t f/T.If
The discrete system ma-rix G can be expressed by various approximations

I obtained in Chapter II. Here we use the following fcur sets of G for

comparison:

G1  [I- MT] -[I+ ! MT] as n-i in (2-35a) (3-39a)

G2 I MT]'I[I+ MT]}2 as n-,2 in (2-35a) (3-39b)

=1 i-1 i 1 2]2
G [I- I MT+- (T) 2-I+.l MT+ 1_ ()

3a4 64 4 64

I as n-"2 in (2-35b) (3-39c)
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4 2 7 2 1 2- 7 2 144

as n-i in (2- 35c).- (3-39d)

Multiplying G iU= 1,2,3,4) in (3-39) j times Q(- 1,2,...,m) gives:

i (D(jT (3-40)

(Di2 liQ T) (D 2 2 QiT)

The corresponding discrete feedback gains L i(iT) become:

L i QT) - R7 B Tpi QT), (3-41a)*

t where

IP(j T) =[I jT D Q) l")MM)3

[( ill (T)-1D U2(QT) f, 2 (MT) cD 2l(MT)]1 (3-41b)

I Since the Li QT) in this example is a 3x1 dimensional vector, we denote

Ieach element of this colun vector as Lli (JT), L iUjT) and L Ri(iT).

Tables~ 3-1, 3-2 and 3-3 show the optimal gains obtained for L li(t),

L L2i (t) and L 31(t) respectively, where t - JT, j - 0,1,2,...,m and m-64

or 8 or 4. From Tables 3-i to 3-3 we observe that when a larger number

II of intervals, mis used, a better approximate result is achieved. In

addition, a better approximate model (Gi as i>>i) results in a better
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discrete opt-imal gain. This implies that a larger sampling period can

be used if a more sophisticated model is chosen.

Using the different L i's obtained from (3-41a) for m=64, 32,

16, 8, 4 or 2, we find the L 's in (3-28). From (3-37) the discrete

optimal state trajectory is attained. Consequently, the performance

indices (defined as J ci) for the various Li(t) can be calculated by

using the trapezoidal rule and are listed in Table 3-4.

i'rom Table 3-4 we observe that a more sophisticated model gives

a more precise performance index.

To reduce the number of piecewise gains,an averaging technique as

shown in (3-30) and (3-31) is applied. Various performance indices,

J+ and Jki with m=64 and K = 2,4,8,16 or 32 in (3-30b) and (3-30c),

are listed in Tables 3-5 and 3-6, respectively.

Comparing the data in Tables 3-5 and 3-6 we observe that the

performance indices in Table 3-6 which use t piecewise time-varying

* gains are better than those in Table 3-5, which use k piecewise-constant

gains. Also, comparing the performance indices in Tables 3-4 through 3-6,

we conclude that the performance indices in Table 3-5 and Table 3-6

(which use I piecewise gains where k = 32,16,...,2) are slightly larger

than those in the first column of Table 3-4 (which use m=64 piecewise-

constant gains). However, a smaller number of simplified piecewise

gains is used in Table 3-5 and 3-6. Note that Z<m. Furthermore, the

performance indices obtained from 9 simplified piecewise gains in

Tables 3-5 and 3-6 are better than those obtained from the same number

of piecewise gains in Table 3-4.

4

I Ii I I I I I I II I II I I II I I
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i m 64 32 16 8 4 2

Jcl 1.68907 1.69223 1.70617 1.76519 2.01198 2.87484

Jc2 1.68850 1.68995 1.69708 1.72875 1.85897 2.31682

Jc3 1.68836 1.68938 1.69482 1.71977 1.82204 2.16286

Jc4 1.68831 1.68919 1.69407 1.71686 1.81097 2.13606

TABLE 3-4. THE PERFORMANCE INDICES OBTAINED BY USING L pc(t)

i 32 16 8 4 2

+3 cl 1.68909 1.68919 1.68956 1.69150 1.69945
j+
c2 1.68853 1.68862 1.68899 1.69093 1.69886
C2
3 1.68838 1.68848 1.68885 1.69079 1.69871

+

4 1.68834 1.68843 1.68880 1.69074 1.69866

TABLE 3-5. THE PERFORMANCE INDICES OBTAINED BY USING L+ (t) WITH m=64
PC

i 32 16 8 4 2
Jti 1.68907 1.68907 1.68913 1.68993 1.69915

Jt2 1.68850 1.68850 1.68856 1.68935 1.69855

+

J3t 1.68836 1.68836 1.68842 1.68921 1.69840
+

J 1.68831 1.68831 1.68837 1.68916 1.69835

TABLE 3-6. THE PERFORMANCE INDICES OBTAINED BY USING Lt(t) WITH m-64

P
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Example 2. Stochastic Control Problem

Consider a one-dimensional tracking problem

i(t) = Fx(t) + Dw(t)

f[ ] x(t) + [ W(t); x(t) = x(01 (3-42a)

L0J [x2(t)J

j d(t) = Hx(t) + v(t)

I [1 01 x(t) + v(t), (3-42b)

where x1 (t) is a noise-free position function and x2(t) is a constant

velocity corrupted by a Gaussian white noise with covariance Q - 0.1.

The radar detects the position, xl(t), and is corrupted by a Gaussian

white noise with covariance R - 0.5. The velocity state disturbance,

w(t), and the measurement noise, v(t), satisfies:

I
E[W(t),W T(T)] = Q6(t-T) = 0.1 6(t-T) (3-43a)

I E[v(t)v (T)] - RS(t-T) = 0.5 6(t-T) (3-43b)

E(w(t)v T(T)] = 0. (3-43c)

I
The initial condition is

x(0) - (3-43d)
0 .



From Eqs. (3-15) through (3-17), we have 5

DQD~ TJ

o 0 2 0
-1 0 0 0

= 0 0 0 1 (3-44a)

L0 0.1 0 0

and

$(T) =e MT. 
(3-44b)

The estimated initial conditions are chosen as

The corresponding covariance matrix becomes

p(0) f j1 (3-45b)

By applying (3-19) and (3-20) and using the four approximation modes
in (3-39), we can derive the Kalman gains Kii (t) and K 21 (t) for i = 1,2,3,4,I where t - JT, j - 0 ,1,2,...,m and m - 200 or 8 or 4. The result is
shown in Tables 3-7 and 3-8 for K 1 (t) and K 2 (t), respectively. Sur-112
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prisingly, all estimated states obtained by using various modes and

various piecewise states give good estimation. In Figures 3-1 and 3-2,

the simulation results with G and G in Eq. (3-39a) are plotted, In

order to demonstrate the effect of averaging, the states simulated

from averaged piecewise-constant Kalman gains and averaged piecewise

time-varying gains are also included. Here the number of intervals

(=k) and the number of subintervals (=K) are chosen to be 8 and 25.

I

I
I

I
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CHAPTER IV

APPLICATIONS OF PIECEWISE LINEAR APPROXIMATION

In Chapter III, piecewise constant approximation and piecewise

linear approximation are used in finding the optimal gain and Kalman

gain. In this chapter, we shall focus on the application of piecewise

linear approximation.

Since the nineteenth century, the applications of piecewise con-

stant functions,such as the block pulse function [26] and the Walsh function,

(27] have been widely investigated by engineers in several fields,

including optical engineering (28,29], biomedical sciences [30,31],

commtmication theory [26,32,33], control system (34,35] and stochastic

systems [36,37]. The advantages of these piecewise constant functions

are that they introduce fairly accurate approximation techniques in

analyzing electrical equipment and that they yield precise results

in the simulation and design of a real system. The purpose of this

chapter is to examine some important properties of piecewise linear

functions and their extensions in system simulation.

From (2-2) the exact solution of a continuous-time state

equation given in (2-1) is

x(t) - At x(0) + t e A Bu(dA, (4-1)

where the second part in the right-hand side equation is the convolu-

tion integral between eAt and Bu(t) for a causal system; therefore,

we can rewrite (4-1) as follows:

6363I
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x(t) -eAtx() + f eAXBu(t-X)dX (4-2)

Shieh [38] evaluated the states by using a rectangular approximation

of the input,u(t), which is equivalent to inserting a sampler and a

zero-order hold device before an integrator. The rectangular approxim-

ation, however, may be unsatisfactory when a stiff input is applied.

In this case we may approximate the input by a series of piecewise

linear functions.

If t - KT and X in (4-2) is in the range [iT,(i+l)T] for

i - 0,l,2,...,K-l, then u(t-X) can be approximated in the following

fashion:

u(t-X) - u(KT-X)

- u[(K-i-l)T]+ -tu[ (K-i)T]-u[(K-i-l)T]}tKT-X-(K-i-l)T]

N -i-_ T( i- UKi_-1) 1 (i+I) T- A 1 (4-3)

Here we use ui to represent u(jT) for simplification of the derivation.

Substituting (4-3) into (4-2), we find:

x(t) x(KT) - e Atx(O) + e AXBu(t-X)dX

e AKTx(O) + K1 iT e AXu(t-X)dX

K-1 ,(i+l)T AX
- x(O) + e _ ¥(uiuil)[( i + l ) T- Xl d X

i=O fiT

MT K-1 -2 AT_ 2

•e x(O) + 1 -I eAT [I-eA (I-AT)]A BuK__il+[e A -(I+AT)]A - BUK
i i=O (4-4)
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A recursive relation is obtained from (4-4) by substituting t - (K+1)T,

namely ;

x[(K+l)T] - eA(K+l)Tx(O)+ 1 {I A BuK_i

i-0

+ [eAT-I_+AT)]A- 2 Bu._+ 1 1

AT AKT K 1 A(i-l)TA -2
e {e e x(O)+ I e [(I-eA(-AT))A BuKi

iil

+ -e AT -AT) -2 D

T [eA-(I+AT) ]C2 BuK+l1 l

-e ATx(KT)+M.Ku(KT)+My+iu(K+1), (4-5a)

j where

[IeAT(IAT)]A2 B (4-5b)

K+i le AT-(i+AT)]A 2B. (4-5c)

However, by applying the piecewise constant approximation [38], the dis-

crete state solution can be expressed as:

x[(K+l)T] - eATx(KT)+Mu* ( Kr) ,  (4-6a)

where
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M (eAT-I)A-1B (4-6b)

and

u*(KT) {u(KT)+u[ (K+l)]} . (4-6c)

By using G as given in (2-14), the corresponding M, M and MK+1 are

formulated in Table 4-1.

If we choose the best approximation mode for e given in

(2-34), i.e.,

G- eAT
-1e

1(e n)-e (e 2 n)] n

((1- 1 ATnMI+ i(l)i(J-:) (ATn) i]}_} *
i-i (2 )(j) (i) n

(I+LAT (J-i) (ATn)iI}n .  -7)

[(I+ -L-) AT) )[1+ (

By substituting (4-7) into (4-5b), (4-5c) and (4-6b), the results are:

M - T{I+ (-l)i[j2" (i-l)] (AT)i)-n

T(- i-1 (2)* (j2)'(i l)

i2
I [l"(-1>ij[j2-1(j->) (AT i-iln (4-8a)>

i-1 (2i).(j 2).(it) n

11
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MK  T{I+ (-1) (A I}-n,
1=1 (2 ).(jn).(i) T

i[ 2_i (1-) 1-2 [ 2 (AT)

~. 2(AT) + [. (A2

i--2 (2').(j2).(i) i=1 (2 ) (j).(ii)
(4-8b)i 12I (-1) i [J-(i-!)] A

K+l T{I+ 2(AT
:=1 (2 ) . (j )(iZ)

I {j [l-(-)'[i 2 "i(i-l)1l (ATn) i-22 (l)iJ2-i(i-l)] (ATn)i-u}
1-2 (2) 0 2)"*(1!) i=1 (2i)-•(j2). (it)

I(4-80

The G, M, MK and MK+1 matrices as obtained by substituting j - 1,2,3,4,5

Iin (4-7) and (4-8) are listed in Table 4-2.

In order to see the varied results obtained by using piece-

Iwise constant approximation (abbreviated PC) and piecewise linear
approximation (abbreviated PL), we shall look into the following

I linearized 2-shaft gas turbine model developed by Mueiler (39]:

I
1

-1.268 -0.04528 1.498 951.5 xI  0 0

2  1. 00197 -1. 957 8.52 1240 x 2  0 0 u1

x3  0 0 -10 0 3 10 0 L i
0 0 0 -100 x4  0 0

ii (4-9a)

1|| | ||!|i| mm
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where

ul(t) i unit step input (4-9b)

u2(t) - ramp input. (4-9c)

The initial conditions are:

o0
x2 (0) 0x3(O) 0 (4-9d)

03() 0
x4 (o)

The exact state solutions can be found as:

xl(t) -541.752+714.701t+549.442e- 1.34174t

I - ~7. 771e "1 "88326t +0.177e'lOt-o 0963-OOt(40a

I (t) -790.109+999.545t+894.78 4e-l.
34174t

- 105.586e - "88326t+.0 37e-lot-o.l125e- OOt (4-10b)

x3(t ) - le - lOt 
(4-c)

x4(t) = -O.O1+t+0.0O008e-I" 34174t_0. 0004e-1.88326t

+ O.Ole-lOOt (4-10d)

1f
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For the sake of comparison , we choose the approximated state transi-

tion matrix as (n-2 in Table 4-2)

G - [I_ _ AT+ L (AT)2]-[ + _ AT+ (AT) 2 ]  (4-11)2 16AT 2 16~T-~A)3

The states obtained by using PC and PL approximations are listed in

Tables 4-3, 4-4, 4-5 and 4-6. Comparing these values with the exact

state values, we conclude that PL gives a better result than PC.

Therefore, if the polygonal hold, (a device for integration

using the trapezoidal approximation method [40]) can be realized, a

more accurate discrete-time state solution can be achieved.

I

I

I
I

I

Io

It. .. ... .
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Time Exact xI  x1 (Using PC) x1 (Using PL)

0 0 0 0

0.02 0.08446 0.10736 0.08657

0.04 0.47723 0.49992 0.47736

0.06 1.22978 1.25147 1.22925

0.08 2.34013 2.36100 2.33933

0.10 3.79942 3.81955 3.79844

0.12 5.59816 5.61758 5.59702

0.14 7.72708 7.74581 7.72580

0.16 10.1772 10.1953 10.1758

0.18 12.9398 12.9573 12.9383

0.20 16.0066 16.0234 16.0049

TABLE 4-3. COMARISONS OF APPROXIMATED x1 (BY USING

PC AND PL) WITH THE EXACT x1

Time Exact x2 x2 (Using PC) x2 (Using PL)

0 0 0 0

0.02 0.12230 0.15211 0.12496

0.04 0.66790 0.69748 0.66796

0.06 1.70049 1.72882 1.69966

0.08 3.21492 3.24226 3.21375

0.10 5.19778 5.22422 5.19637

0.12 7.63529 7.66088 7.63370

0.14 10.5144 10.5392 10.5126

0.16 13.8227 13.8467 13.8207

0.18 17.5484 17.5716 17.5463

0.20 21.6804 21.7029 21.6782

TABLE 4-4. COMPARISONS OF APPROXIMATED x2 (BY USING

PC AND PL) WITH THE EXACT x

. ... . I i li I I I2



74

Time Exact x 3  x3 (Using PC) x 3 (Using PL)

0 0 0 0

0.02 0.18127 0.18141 0.18141

0.04 0.32968 0.32990 0.32990

0.06 0.45119 0.45146 0.45146

0.08 0.55067 0.55097 0.55097

0.10 0.63212 0.63243 0.63243

0.12 0.69881 0.69911 0.69911

0.14 0.75340 0.75369 0.75369

0.16 0.79810 0.79837 0.79837

0.18 0.83470 0.83495 0.83495

0.20 0.86467 0.86489 0.86489

TABLE 4-5. COMPARISONS OF APPROXIMATED x3 (BY USING

PC AND PL) WITH THE EXACT x 3

I

Time Exact x4  x4 (Using PC) x4 (Using PL)

0 0 0 01 0.02 0.01135 0.00889 0.01111

0.04 0.03018 0.02765 0.03012

1 0.06 0.05 0.04752 0.05001

0.08 0.07 0.06750 0.07

0.10 0.09 0.08750 0.09

0.12 0.11 0.10750 0.11

0.14 0.13 0.12750 0.13

0.16 0.15 0.14750 0.15

0.18 0.17 0.16750 0.17

0.20 0.19 0.18750 0.19

TABLE 4-6. COMPARISONS OF APPROXIMATED x4 (BY USING

PC AND PL) WITH THE EXACT x44

I!



CHAPTER V

CONCLUSIONS

A simple and fast algorithm is developed for approximate linear

regulator and Kalman filter problems.

After introducing the definitions for the linear regulator and the Kalman

filter, we establish piecewise-constant and piecew.se linear approxima-

tio; - to solve for the state transition matrix. A geometrical series

approach with scaling and squaring is used in approximating the expon-

ential of a matrix. Plecewise-constant gains and piecewlse time-varying

gains for approximating & time-varying optimal linear gain and a time-

varying Kalman gain of quadratic synthesis problems can be solved

through this approach.

The proposed method greatly improves the accuracy and computa-

tional speed of the existing methods which use the Walsh function and

the block-pulse function. The developed ruboptimal feedback gains for

a deterministic continuous system and the approximate Kslman gains for

a continuous stochastic system can be readily implemented on the low-

cost mic: onrocessors or minicomputers for on-line control and estimation.

The effectiveness of the piecewise-linear approximation is

further demonstrated by examining the system simulation problem. A

transformation from a c,":,tinuous-time system equation to a discrete-time

system equation is derived using a piecewise-linear approximation technique.

The re,.ulz is surprisingly accurate. The errors of simulating a linear-

izad 2-shaft gas turbine model with only 11 samples are within 0.03

percent.

The Linear regulator p .)blem and the Kalman filter problem are two of

75
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the most often encountered control problems. The proposed algorithm

has been found to be efficient in solving these problems. Potential

usefulness of this method in solving other problems remains to be ex-

ploited.

I,
I

I
I

I
I
I

I
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Zeros Using Industrial Specifications

LEANG-SAN SHIEH, MEMBER, IEEE, YING-JYI PAUL WEI, MEMBER, IEEE, HSI-ZEN CHOW, AND ROBERT E. YATES

AbsMet-A graphical method and an analytical method are presented of a group of clustery poles and zeros. This implies that the
to determine the equivalent dominant poles and zeros of a syster, using poles and zeros which are not near the jo axis may dominate
assigned industrial specifications. A second-order transfer function the characteristics of the system response. Therefore, the
with two polei and one finite zero is used to investigate the relation- y
ships between industrial specifications and the two poles and one finite equivalent dominant poles and zeros, rather than the dominant
zero. Also, it is used to verify the rule of the thumb obtained from poles and zeros obtained from the geometric locations in the
Axelby's empirical results. A frequency response data matching method s plane, become significant in the analysis and synthesis of a
is proposed for fitting a low-order transfer function using the assigned high-order system. Furthermore, the design goals and the
industrial specifications that are obtained from a given high-order
transfer function. Thus the equivalent dominant poles and zeros of
a high-order system can be determined from the identified low-order of control specifications [21 (called the industrial specifica-
model. tions) that are commonly classified as 1) the time-domain spec-

ifications, for example, the rise time and the overshoot, 2) the
1. INTRODUCTION frequency-domain specifications, for example, the bandwidth

and dhe phase margin, 3) the complex-domain specifications,
N the filter and compensator designs it is necessary and use- for example, the damping ratio and the undamped natural
ful to have a rapid method or a simple graphical method to angular frequency or the equivalent poles and zeros in the s

determine the poles and zeros that dominate the characteris- plane. If the relationships among the time-domain, frequency-
tics of the transient response. These poles and zeros are called domain specifications, and the equivalent poles and zeros (the
the dominant poles and zeros that can be used to estimate the complex-domain specifications) can be simply determined
dynamic behavior of the system response. In the literature, from a simpie equation or a working graph, then the selected
the definitions of the dominant poles and zeros are ambiguous. poles dnd zeros in the dcsign of filters and compensators be-
For example, the dominant poles are commonly defined as the tome meaningful, and the design processes can be greatly
poles which are located near the imaginary axis (the 'co axis) simplified.
or the poles which have the smallest absolute value when no In this paper, a graphical method and an analytical method
significant zeros appear. S'-netimes a pole P is defined as the are p.opoed to determine the equivalent dominant poles and
dominant pole [1] if IPjl. 51PI where P are other system zeros ,using assigned industrial specifications. First, relation-
poles. The roles of dominant zeros that are often neglected ships among various industrial specifications will be studied.
in the literature become significant if the precise dynamic A second-order transfer function having two poles and one
characteristics of a system in the transient state are required. finite zero is used as a basis for the investigation. Several
The zeros not only contribute to the initial conditions of the working graphs and mathematical expressions are developed
transient response but also increase the bandwidth in the fre- for the determination of the two dominant poles and one
quency domain; therefore, the roles of the zeros are as im- dominant zero using the assigned industrial specifications. Then
portant as those of the poles. the equivalent dominant poles and zeros of a high-order sys-

As the technologies are progressing, the accurate description tem are determined by a new dominant frequency-response
of many physical systems results in a high-order transfer func- data matching method. The equivalent dominant poles and
tion that consists of many clustery poles and zeros in the s zeros thus obtained satisfy the exact assigned industrial
plane. The poles near the /w axis may not be dominant poles specifications.
because the dominant effects on the transient response be-
havior of the poles are cancelled by the nearby zeros, and the II. THE RELATIONSHIPS AMONG VARIOUS INDUSTRIAL

system response may be characterized by the collective efforts SPECIFICATIONS

In control system design, the design goals are usually ex-
pressed in terms of a set of industrial specifications. The place-

Manuscript received July 13, 1978: revised January 25, 1979. This ment of poles and zeros based upon the assigned specifications
work was supported in part by U.S. Army Missile Command, Redstone needs certain experiences. If the relationships among various
Arsenal, AL. DAAK 00-79-C-0061, and U.S. Army Research Office
DAAG29-77-G-0143. industrial specifications can be determined, then nonconflict-

L. S. Shich, Y. J. Wei, and H. Z. Chow are with the Department of ing industrial specifications can be assigned as design goals, and
Electrical Engineering, Universit', if Ho-iston, 'louston, TX 77004 the meaningful dominant poles and zeros can be selected for

R. E. Yates is with the Guidance and Control Directorate, U.S. Army
Missile Research and Development Command, Redstone Arsenal, AL filter and compensator designs. Thus an effective design
35809. method may be developed.
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An empirical study on the relationships among various in- wiere Y(s) and R(s) are the output and input functions,
dustrial specifications has been conducted by Axelby [3]. respectively, and is the damping ratio and w,, is tile un-
The empirical rules or the rule of the thumb, which link the damped natural angular frequency. From (2) we observe that
specifications in both time and frequency domains, are listed the zero of the system is located at infinity, and is not a
as follows: significant zero. Since the time-domain specifications are of-

ten used to define the characteristics of the transient behavior,
M t  M (la) the roles of zeros become significant. Therefore. a bettersin 0,n model than that of (2) should be used to study the relation-

where M, is the maximum value of unit-step response, JP is ships among the industrial specifications. Thz transfer func-
the maximum value of the closed-loop frequency response, tion of a unit-feedback system that has two poles and one
and 0,m is the phase margin; finite zero is used as a basis for the investiganon. The pro-

I posed closed-loop transfer function is then,
Me =-- (Ib) Y(s) rW,,s + W bls+b 2  B(s)

C R(s) s + + + as + a -- A(s)

where Me is the maximum value of the error of the unit-ramp

function and w, is the gain crossover frequency; r + I

W :=W rs* + 1 (3)
where wp is the peak value frequency or the frequency when (.)+22 + I

Mp occurs- where s* is a normalized complex variable, a, and b, are con.

sit = C (Id) stan ts. and A(s) and B(s) are two polynomials. The normalized

where /, is the maximum value of the unit-impulse response; poles and the orig-nal poles are at

3 st= - + IVrf -t2 s1 = 1, + l/ ' N 2

tP c (l s'=- j-] lx- 2 = - Wnll (4a)

where tp is the peak value time or the time when M t occurs, and the normalized zero and the original zero are at

1.8= ± s= - - (4b)tv "- WC (I f)

where tt, is the time when the maximum error of the ramp The open-loop transfer function G(s) of tile system in (3) is
function with respect to its input occurs;r + Kt, I + -

t IIg Gs)= n =) (5)
tC ==W- s+( , 1nf

where tc is the time when Ar occurs. ((l + 1)where K , = o,,/(2 r) is the velocity error constant if r< 2
Other rules of the thumb according to Truxal [41 are listed

as follows: a = (2P r)o n, and b = on/r.
trOb = 0.6r to 0.9r (Ih) Comparing (2) and (3) we observe that a finite zero has been

inserted in (3). The zero contributes the initial condition at
where tr is the rise time or tile time required for the response the transient state, and it reduces the velocity error at the
to go from 10 to 90 percent of its final value and Gotb is the steady state. Also it provides an additional bandwidth in the
bandwidth in rad/s; frequency domain, which increases the phase margin and im-

I proves the stability of a system.
td K(i) The derivations of the relationships among the industrial

specifications are shown as the following seven relationships.
where td is the delay time or the time required to reach 50 1) The Relationships Among M t,, tp. . <, . and 7 The unit-
percent of its final value and K is the velocity error ccnstant. step response of (ie system in (3) gives

Some other analytical results that repiesent the relationships ro s + W2
between the time-demain specifications(but not the frequency. Y(3) 2 , ) (6a)

domain specifications) and the complex-domain specifications ines L tras o rs

have been developed and can be found in standard textbooks The inverse Laplace transform of Y(s) results in

[5], [6]. The most commonly used function for investigating Y() I e-t t cos co,, \/" 7 -2 t

the relationships is I
I(s) 2_ + sin W ,
R(s) S2 + 2 ws + ( 2 si n,,i---. .
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Differentiating y(t) with respect to t and setting the result Mt
equal to zero yields

"--= (Ir + tan-' 1 (6c
Substituting (6c) into (6b) and simplifying it gives the maxi-
mum value of the unit-step response

Mt = I + e-twn'p(r 2 - 2rt + 1)1/2. (6d)
2) The Relationships Among Mp, {, C on, and r: Apply-

ing Higgins and Siegel's complex variabl; differentiation
method [7], we can solve the peak value frequency wp from
the following equation:

Rj I[ I Bs_ I -0.s (7a)R B(s) ds A(s) s jj IWp

Thus we have

W =/(2 V / T t)t' ifr=o (7b) . .

and 2-

, = - -L + /(2 + 1 )2 _ 4 12 1 /2 I-
7 

-I

0 0.25 os o. 75 &=1 0M, -c- [%/(r2 + 1)2 - 412-2 - (.2 + 1) ' f00. Fig. 1. Relationships among Mt, l, n, and 7 shown in (6 d).

+ 2t2-2] -1/2. (7c) Differentiating e(t) with respect to t and setting the result
equal to zero we have3) The Relationships Among Om, c, t, wn, and r: Using qao rw1the definitions of Om and c 

[ J (9b)
t1) = 

tan-' N
m =/G( G ,./% + 1800 (8a) 74n "

and 
Substituting the t, into (9a) and simplifying it we have

jG(sA ./% =(8b) Me = [2t - 7 + ,/(I + r2 - 2 7 )e-tw",v]/wn. (9c)we have 
5j The Relationships Among tc, t,, cWn, and 7: Dif-ferentiating the unit-impulse response y(t) of the system in7" + (2t - T (3), )(t), and set:ing the result equal to zero, we have the time

'Pm = tan- ' (8c) tc at which the maximum value occurs, orand 
= 

(2t -rl 
-2t) __a-i]tL = tan- f - 2I + (lOa)

Wc = Won [2t7 - 2- 2r)2 +I 1/2. (8d) Substituting tc into fi(t) yields the maximum value of the unit-
4) The Relationships Among t0 , Me, t, w.,, and r: The er. impulse response At, orror signal e(t), which is the difference between the ramp in. Mir = {one-C-ntc - 2tr + I. (1Ob)put r(t) and the time response y(t) of the same input to thesystem in (3), is 6) The Relationships Among K0, , o,,, and 1: The velocityerror constant K,, can be derived from the basic definition aser) - 2t- - e- ',[B cos w,, 1vi -t2 t

cin A con K,, = lira s"- G(s) if r 2. 11C Csin wn. IN/l _t t (9a) .1-0 2- -'fr <21.I)
where 7) The Relationships Among w0b, , n, and r: The defini-

tion of the bandwidth of a system isA = (I - t2), B =(2t - Xl -t2),l

C=(l - 2P +7 )v/-:- . IT(s)IJ.b = T (12)



128 IEEE TRANSACIFIONS ON INDUSTRIAL. ELECTRONICS AND CON rROL INSTRUMENTATION. VOL. [ECI-26. NO. 3. AUGUST 1 979

P ig 4 Reid tionilhipsa.ioig W"I) m~ . anld r Shown IIiI (8c)

Fit! 2. Rela I onships .am1ong Mep,. w,,. and rdiow~n i (7).

2

Fig. 3. Rehilionsipaiong Ip. 4. w,,. andI r jihowl in (60* r which are [Ihe specifica tions in the comnplex dlomain. These

expressions ar, iiornialiizcd and graphically shown1 In Figs. I -

The analytical expression is Hi. I fanl industr ial specifica tion is assigned, ihle corresponding
Sandl r or the t;quivalent poles and /cro in (4) can be deter-

Wh = (Op [(I + 
2  ) + \/i+ ' 

2)2~ I- ' (I] mined front the plotted curves. Also the curves in Figs. Q2-

Most important Inne-domain an(I frequency-domn specifi- IS can he used to verify thec rules oft he thumb proposed by
cations have heen analytically expressed in ierms of . w~, and Axelby [31 . It is observed that the accuracy of Ihe rales dle-
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P Me

2-

0I

., T 2

l.O-O

Wn

Wn 0 . 0,25 0.'5 0.'75 ' 0

0 0.25 0.5 0.75 ).0 Fig. 8. Relationships among Me, t' n and r shown in (9c).

Fig. 6. Relationships among wp, C wn, and r shown in (7).

tv

10-

2

6

3-

1 1 i • 1

0. 0.25 0.5 0.75 'I.0

Fig. 7. Relationships among iu, E, w., and r shown in (9b). ...

0. 0.25 0.5 0.75 r- 1.0
Fig. 9. Relationships among Mr',, tan, and r shown in (10b).

pends upon the range of the damping ratio and the zero loca-

tion. Furthermore, from the developed working graphs, a set
of meaningful and nonconflicting specifications can be as- a problem of a high-order transfer function fitting using indus-
signed for the design goals of a control system. trial specifications. Shieh et al. [8], [91 have developed an

Ill. DETERMINATION OF EQUIVALENT DOMINANT POLES original synthesis technique to fit a second-order transfer func-
AND ZTERNATO OM AUIVALE O L tion based on three industrial specifications. The Newton-
AND ZEROS FROM A HIGH-ORDER MODE L Raphson multidimensional method [10] was applied to solve

In the design of high performance control systems, quite the resulting nonlinear simultaneous equations that can be
often several specifications are assigned as design goals, and the converted to a single variable quadratic equation. However, it
corresponding dominant poles and zeros are required. This is is well known that the Newton-Raphso, method will only con-
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tc b

2

3 0

0 0.25 0.5 0.75 , I

Fig. 10. Relationships among tc , t, ton. and r shown in (1Oa). n

0. 0.25 0.5 0.75 1.0
verge for a small range of starting values or the initial guesses. Fig. II Relationships among wb, w,, w, and r shown in (13)

It is also known that high-order nonlinear equations have
many solutions that depend heavily on the initial guess used.
For general nonlinear equations that cannot be converted to a specifications in (14) can be determined. The third-order
single variable equation, the Newton-Raphson numerical model is
method may not converge to the desired solution using arbi-
trary initial guesses. In this paper, the original synthesis method Y(s) K(s + z)(s +- z2 )
[8], [ 9] is extended for modeling a high-order transfer func- R(s) (s + 2 ws + )(s +p )
tion using many industrial specifications; and an analytical bs 2 + b2s + b3  (15)
method is proposed for the estimation of the good starting ( 1 +aas2 + a2s + a3
values. T us the desired dominant poles and zeros can be de-

termined from the identified transfer function. The method where K, p, t, w , zI, and z 2 or the corresponding ai and bi
can be well illustrated using the following example. are unknown constants to be determined. Because the system

Suppose that the poles and zeros that represent the follow- is a type "1" system, the final value of the unit-step response
ing given industrial specifications are required to be determined, of the system in (1 5a) is unity or

Type "I" system (14a) Y(t)[t.. = lim s" R(s)Y(s)

coc the gain crossover frequency = 4.7 rad/s (14b) S-.o

0Pm the phase margin = 45.60 (14c) = lim s. - \( 3 b+s2 + b 2 s- + a =a =

MP the maximum value of the closed-loop frequency -0 \s )s +aIS2 a2S a3  73

response = 1.5 (14d) (I5b)

(&P the peak value frequency = 3.5 rad/s (14e) or a3 = b3. (15c)

Wob the bandwidth of the closed-loop frequency As a result, (I 5a) can be simplified as

response = 6.5 rad/s. (14f) Y(s) bs 2 + b2s + a3  (15d)

The assignments of the specifications in (14) closely follow the R(s) = s + ats2 + a2s + a3"
rules shown in (1). Therefore, the confliL.ed assignments can The open-loop transfer function G(s) is
be avoided. The first two are the open-loop specifications, b1s

2 + b2S + a3
while the others are the closed-loop ,nes. Three equivalent G(s) = b[s2 + a s + a2 (15e)
poles and two equivalent zeros that represent the assigned sfs a + (a1 - bt)s +(a2 - b2 )] -
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Following the definitions shown in (14). we can construct
~~ ~ a set of nonlinear equations 1j(al. a2, a3. bl.b 2) = 0 for i

The definition of wC is

- - The correspon ding nonlinear equation is

Ifi(a. a2.a3, bi.b 2) =(a, - bi)w C Ico (a- b2jc)J

(a,- *b I c) 2 -b2 Co~ (I16b)

10The definition of 0, can be expressed as

3. 0. = 180. +,(j) .H (I17a)
2 The nonlinear equation is

If 2(al. a2, a3 bi, b2) =b2W'(ul -bl)

(a3 - b Iwl)(w' - a2 + b2)

- tan o.. ((a3 - blco')(a, - iw

+ -2C(j a2 + b2)J 0. (1 7b)

The definition of Cot, is known as

The corresponding nonlinear equation is
f0.l a.2. a3.1,b) a 0 22+ w

Fig. 12. Relitionships among Mp, Af, and I/sin o.m shown in (1). b3 a, 2 abb)(a-b 1 ) 2 bo

- R[(a 3 - a (,0) 2 + (W3 2)

M tc -0. (1 8b)

The definition of cop gives
____ Me__ d Il T(jw) It

- =0. (1 9a)

Following Higgins and Siegel's complex variable differential
6- technique [71, we have the following nonlinear equation:

f 4 (ai, a2, a3, bi, b2) = f2ala3WP - I Pw

5- - (a3 - 3w'~)(- w' + a2wp)] P(3

- blwo') 2 + (b2coJr)2 1 + [2~io

4- + 2b 1 P + b22cipI [(a3 - a I wp)

+(-o +a2 Wpf)2  =0. (19b)

3- The definition of M,, is

2-- The nonlinear equation is

fs (a I, a2,a3, b I,b 2) =(a3 - b I 2 2 +b 2W2

-Mp' [(a3 -.W)

+ (W3t - a2Co P)2j 0. (20b)
Equations (16)4(20) are a set of high-order nonlinear simulta-

Fig.13.Reltionhip amng M, ~andI/~ how in(1) neous equations which are vary difficult to solve. The Newton-
Raphson method, which is available in most digital computers
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curv ( + nonlnea eqain in (16 throug (s0 yild t2.e desiredi (

te :Dtmn dominant poles anutesomn n olespcfato wit = 1.49125

b= .5 10f.96 The modifie secon-orde rore toleranc of 1.082622 Th eiredtrasfr2fnc6318i

+i + 2616s 2 20899 + 19206.2522
w n __ = 2.25

T2(S)* = 
2  2 - +I22 (21 c) dusria specifications are21161 ((t2indfomtepoe ad

+2os+wi '-2.4 5s +eo 12. in(2)

The b, can be easily determined b) using the definition of and

GWb in (I18a): z,=4.880591402 +i/3.68424378

b 3.178 1. (21d) :2 =4.880591402 /3.68424378. (23b)
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When the distribution of the poles and zeros of a high-order More over, the proposed method in this paper has been
transfer function is known and the reduced-order transfer successfully applied to redesign the compensators of a stabi-
function that consists of equivalent dominant poles and zeros lized pitch control system ef a raal semiactive terminal homing
is required, it is a model reduction problem. Recently, various missile [16]. The overall system characteristics of the rede.
model reduction methods [12]-[15] have been proposed in signed missile [171 match those of the lower ordered model
the frequency domain. However, their reduced models [12] - obtained from assigned industrial specifications.
[15], do not keep the assigned industrial specifications, which
are obtained from the original system. The preservation of the
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Synthesis of optimal block controllers for multivariable
control systems and its inverse optimal-control problem
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Abstract

A new method is presented to synthesise optimal block controllers for a class of multivariable control systems
represented by the block companion form. The reverse process of obtaining the optimal block controller is used to
determine the block-weighting matrices of the quadratic performance index front prescribed control specifications.

1 Introduction C = [C1  C2 ... C] (4d)

The accurate description of linear time-invariant systems in The block elements A,. Om, 1m and Ci are m x in constant matrices,
the time domain may result in in nth.degree coupled differential i x in null matrix, in x in identity matrix and in x in constant
equations, or an nth-degrec -itrix differential equation with in x m matrices, respectively. The vector X consists of it blocks (XI,
matrix coefficients' as i I, 2 .... it) and each m x I block Xi consists of in state variables.

n+1 In this paper, we define the vector X as a block vector. Because the
Z AD'-x =u (I) state equation in eqn. 4 is formulated in the phase.variable block
Ica form, the X is defined as a vector in the phase-variable block co-

y 1xordinate. As a result, the X(O) is an initial block vector. From a
y I= CD'1 x (lb) conventional viewpoint, the same vector X is viewed as a vector with

I tm state variables in a general co-ordinate. Therefore, the same state
and equation in eqn. 4 is viewed as a state equation in a general co-

(O) = a, I = 1,2 ..... ) ordinate. In this paper, al the derivations arc based on the state
equation in the phase-variable block co-ordinate rather than a general

whe:re y is an m x I output vector, u is an in x I input vector and x is co-ordinate.
an in x I state vector. A, and C are in x i matrix coefficients, and The objectives of this paper are described as follows:
the differential operator D = dIdt. When each initial vector a, is an
in x I null vector, the corresponding frequency-domain representation (a) Obtain the optimal block-cont law u = -BTPX = X
ofeqn. I is an nth-degree matrix transfer function written as (where the feedback-gain matrix K = R "BT P consists of in x in

block elements K,, i = 1,..., it) to minimmise the quadratic per.
Y(s) = T(s)U(s) (2a) formance index

where Y(s) and U(s) are the in x I output vector and the in x I input

vector, respectively, and the matrix transfer function T(s) is j = 2I XTQX + utRuldt (Sa)

T(s) = N,(s)Dr'(s) = Dt(s)Nt(s) (2b)

The matrix polynomials Dr(s) and N,(s) with appropriate size are for the dynamic system formulated in the phase-variable block
right coprime, DI(s) and Ni(s) left coprime. Let us define co-ordinate in eqn. 4. The T designates transpose, the weighting

matrix R is an assigned in x in positive-definite matrix, and the
D,(s) = ' Ans" -' +... + A 2S + A i (3) block-weighting matrix Q is an assigned nm x nm nonnegative
N,(s) CnS' + C .Sn'2 + .. • + C+S + c, definite-symmetric matrix with in x titblock elements Q,, = QJd.

or

where At and C, are ti x in constant matrices. The corresponding first-
degree state equation in the controllable phase-variable block form or Q11 012 .-. O,
in the controllable block companion form islQ Q 2 n Q

X=AX+Bu (4a) QT (Sb)

y = CX;x(O) = X0  (4b) , Q . nnJ

where
0. 1. 0 . 0. 0 X, The tnt x nut matrix P is the positive-definite solution of the
Om Om m 0m  0 X2 steady-state Riccati equation 2

A , B X = PA+ATP+Q-PBR'BP = Onm (5C)

- tA -A 2  -A 3  -A, - Im 1
X" The same P can be also solved from the following canonical form: 2

(4c)A - 8R-B] IX
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It is noted that, if the pair [A, B] is controllable and the pair Expanding eqn. lOb we have
[A, L] is observable (where Q = LL T ), then the closed-loop
system is not only optimal but stable. D, = Q1 = Ql +AT RAI

(b) Determine the block-weighting matrices Q and R of the quad- = - Q_ + ATRAi2 - - ATRA
ratic performance index in eqn. 5a if the optimal block controller
K is assigned or if the closed.loop poles (or the equivalent control ......
specifications3) of the optimal controlled system are prescribed. D,,1, = R (t0c)

2 Linear optimal-block-regulator problem Taking the Laplace transform of eqn. 10a and neglecting the initial
conditions we have the matrix polynomial D(s):

In the conventional synthesis of the linear-regulator problem, D(s)XI(s) = [D 2,,,,s
2 + D2.s 2 n,-I + ...

the state equation in eqn. 4 is viewed as a state equation in a general
co-ordinate. An optimal control law is then derived by solving eqns. +D 2s+DIXI(s) =Ox i (11)
5c or 5d. In this paper, the state equation in eqn. 4 is consideted as a
state equation in the phase-variable block co-ordinate. The optimal- where D 2 1,+i = D =, k = 0, I_ n and D2 k = -D Tk,

block-control law is derived as follows. k = 1,2. n. It is well known that the poles of the state equation
Expanding eqn. 4 and adding a trivial identity yields in eqn. 5d are symmetrically distributed about the origin in the

s-plane, so are the roots of the determinant of the matrix polynomial
X, = Xi D(s) in eqn. I1. Performing the spectral factorisation6 '7 of the matrix

it =polynomial D(s) results in a stable matrix polynomial A(s) and an
unstable matrix polynomial A(-s), i.e.

xt = X3 = i2 D(s) = FrA(-s)'A(s)F (12)

X(n) = Xn = -AX, -A 2X2 -- •-AX, + u (6a) where

Rewriting the last equation in eqn. 6a gives and = FT F =

u = AXt +AlX +...+AAXt) + XOn) (6b) A(s) = 4,s+ Es"' +...+ E2s+El

Substituting eqn. 6 into eqn. 5a, we have an alternate form of the cost The required optimal-block-control law is then ob,ained from eqns. 6b

function as and 12 as

F(X,u) = F(X,,.... X" )) = F(X*) = X*"QX' (7) u = [K, K2 ... KJX (13)

where where

Qhi1 Q212 ... Q1, A,,R XK At - E, i = 1 2_- n

Qi, QOa .. O n A TR X,
QQ *T When the given system is not in a phase-variable block form, a newly

*..= Q*,X = developed algorithm shown in Appendix 8 can be applied to obtain a

Q.* I Q.* . Q.,. A T R Xn-i) block linear transformation that transforms a class of state equations !
n" in a general co-ordinate into the phase-variable block co-ordinate.

RA, RA 2  ... RAn R X Thus the proposed method can be applied to determine the optimal
I T Q=block controller.

+ ARAI ,

The (n + l)m x (n + l)m constant matrix Q* is a block weighting
matrix with m x m block elements. Applying the gradient matrix
operations4 to the quadratic cost function in eqn. 7 yields Given a set of prescribed closed-loop poles, or equivalent

control specifications3 wye wish to determine the weighting matrices
Fx = O . Or]Q'X* Q and R of the quadratic performance index in eqn. Sa by which

the controlled feedback system has prescribed closed-loop poles and
d.F1, = 10 . . o.]Q** the feedback-control law is optimal. This is an inverse optimal-control

[ ' problem. Kalman$ initiated the inverse problem for a linear time-
invariant single-input system. Chang,9 Tyler and Tuteur have

...... studied the problem via the root-locus method, while Molinarii

dn = and Anderson and Shannon 12 have investigated the problem for a u -
[ l .reOr •.. I]Q*X* n)  (8) multivariable system. All the developed methods are based on the

system equation formulated in a general co-ordinate rather than in a

Substituting eqn. 8 into the following Euler's equations phase-variable block co-ordinate. Since the multivariable dynamic
system is formulated in a matrix differential equation, it is more

d - , + -d = Omx (9) natural to investigate the problem in the phase-variable block co-
FX, -±Fx2 + !Fi 1 - . + - - (9) ordinate than that in the general co-ordinate.

it is well known that a feedback-gain matrix can always be ob-
we have tained to give a system with prescribed closed-loop poles if a system
DX, +DX +DX 2 +.. -DX2 X2n) = 0 ,,ix (0a) is controllable. However, the feedback controller may not be optimal.

D i 3 2n+I In this paper we determine the blo,.k-weighting matrices Q and R of

where the quadratic performance index by wtich the feedback controller
siot only provides the controlled system with prescribed closed-loop

[Dl D2 D3 ... D2n,] = [ir -1. m. - - ( nl mI X poles but also performs optimally. The steps involved are described as
follows:

Q* Q*. Q*. ... Q*.. A',R 0. ... Om 0 .Oe Step I

Qu Q*ia Qi..- Q* R - 0StepQ- ,n.i Q,n ATR 0,I On, 0, Define a characteristic matrix polynomial A(s) of the desired closed- -i
2 ' loop system whose matrix coefficients consist of some unknown

0OeO I.. 0.n Q.- Q3,n. Ore 0. Ore parameters (for example., the damping ratio t and the undampedi
natural angular frequency w,, etc.) to be adjusted, The A(s) is

O , Onm ---... Q ,i QnAa Q Q ',, A?R On, A(s) =  Imsn +Ensn-' +... + E s +El (14a) 1
Om O m . • I O RA, RA2 -.. RAN- ,, R If the desired characteristic polynomial of the closed-loop system is t

(10b) [d(s))m = (sn +dns- '  , .. +d 2s +d,)ra (14b)
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where d(s) is a polynomial whose coefficients consist of adjustable and X is ,r, the phase-variable block co-ordinate and consists of two
parameters. The characteristic matrix polynomial becomes block vectors (X,, i = I, 2) and each vector X, consists of two state

variables (xi,. / = I. 2. i = I. 2) The state equation in the phase-A (s) = d(s)Im = Imsn + dn,nSn '1 +... + d2 IrS + d, 1m variable block co-ordinate is

where X1c) ji.i 1 I 1

X 1=dim-i. 2  0 0 0 11X1

Step 2 ..
Construct a matrix polynomial D(s) usingA (s) in eqn. 14 2. - 18.5671 2622"1: - 11-8567 262.21 Ix-.,

D(s) =D 2 ,.ts2 4-D2as2. ' ' -.. + D2s + D, x 2.2  0'005214 - 136'829! 0 -101-3681 .x2.

= FTA '(- s)A(s)F

= F" fI.Sn + (E. -En)S. ' -I j 1(n-t- EnEn + E, S~- 2~ +..+ ETE, I F (15)+ 0 U

where D2,1 = FTF = R is a weighting matrix to be determined. 0 (19a)

Step 3
Solve the block weighting matrices Q and R from eqns. 10 and IS y r 14-98 95150 0 0 1 1in terms of adjustable parameters, or Y = 85-2 1240 0 0 1 .

D . = FF 80 o

D2 n = RA,, -ATR = FT(E,, -E')F x2.1n.. 
X2,2 (19b)

D2 = Q 2 +AT4RA2 -Q2i -ATRA, where

= Fr(ETE, -ETE,)F A 18-5671 -2622" 1 A 11"6567-262"21D, = 1,Q +ATRAI = FTEAEF = -2 2 0 1-61
-(16 0-005214 136-829' 0 101"3681

Step 4 (1 %e)
Determine the required block weighting matrices Q and R by ad-
justing the assigned unknown parameters such that R is positive [14.98 951501 [0 01
definie and Q is nonnegative definite symmetric. C11= , I [

TI procedures can be well illustrated by the following gas-turbine 85.2 12 4 0 0 0 J O (19d)
examf le. It is required to determine two optimal block controllers for the gas-

turbine system by using

4 An illustrative example (a) assigned weighting matrices Q and R of the quadratic performance
index.-insider the following linearised two.shaft gas-turbine (b) assigned control specifications.

model . - "
The procedures are described as follows:

Zi -1-268 -0-04528 1-498 951-5 ZI (a) Optiml-block-controller design via assigned weighting matrices
12 1.002 -1.957 8-52 1240 z2 The cost function of the state equation in the original co-ordinate

S - 0in eqn. 17 is13 0 0 -10 0 z,

0 0 0 -100 = (zTz + uTRuIdt (20)

0where Q = 14 and R =1 that were suggested by Tiwari et a."

0 0The corresponding cost function in the phase-variable block co-u, ordinate is

0 100 (17a) J - [TQX +uTRu dt (21)
and

ly'll 1 0 001 ziwhere 
R =12 and

Z3 [ 1 02 Q22
Z4 (17b) 7828-1776 11941461.5 1 185-671 -521389I

The state equation in eqn. 17 is a system formulated in a general 11941461-5 24436416630 1 -26221 13682-9
co-ordinate. To apply the proposed method, a block-linear- =
transformation matrix T is determined from the newly developed 185.671 -26221 I 100 0
method shown in Appendix 8. The block linear transformation is -13682-9 : 0 100

z = TX (18)
where z( From eqn. I Owe have

[14-98 95150 I0 0] JDI Da .. ID )] [a
1

2 -12] Q1. 0Q., ATR 0
2 0,1

85-2 124000 I0 0 02 0;1 02* A42R 021
18'5671 -26221 I 10 0 a 02 .RA, RAn R
-0005214 136-829 1 0 100 (22) '
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fly expanding eqn. 22, D(s) in eqn. I I becomes The choices in eqn. 27 imply that the closed-loop poles have been

D(s) = Dss 4 + D 4s3 + . . . +D, assigncd at

= Rs 4 + (RA, -AR)s 3  s. -w,, ±cW,,,,/F'- = -225 ±1 198-43 (27c)

(RA 1 + AR - Q22 - ArRA )s
2  From eqn. 26 D(s) can be determined as

+ (Q12 
+ Af'RA 2 - Q21 - ATRA I )s D(s) = FTA"(-s)A(s)F

-FrFs4 + (2w -4 i2c4)F F 2 +W F'rF
+(Q f +A'RAI) = 02 (23)

where 
= Rs 4 + (RA 2 -A['R)s

3

0 -+262-211 +(RA, +AT'R -Q22 -ARA 2 )s2

D5 12.D4 = 262+21 +(Qo
2 +ARA2 - QL -ARA Is

+ (Qit + AfRA 1) (28)
D - 203447 486-84 ] For simplicity, let Q12 = Q 2, = 02. Equating the matrix coefficients

D13 = ~48684 -88755.961 of the same power of eqn. 29. we obtain the following matrix
equations:

0 52440-924] (a) R = FrF (29a)

2 -52440-924 0 (b) RA2 - Ar2R 02 (29b)

18172-92 11892776 (c) RA, +ATR-Q 22 -A"'RA2 (2w -4t 2 o)F TF
D, = ] (29c)

S111892776 2-44433 10101

(d) A TRA 2 -A'RAl = 02 (29d)
Performing the spectral factorisation7 on the D(s) gives 4 T

A (S) = 12S
2 + E~s + E, (24) (eQ,+ fRI=wFF(2)

R is an m x in symmetric and positive-definite matrix which has

where e(m + 1)/2 unknown elements to be determined. The left.hand-
side matrices in eqns. 29b and 29d are skew.symmetric matrices.

17-2396 -261-9061 [46-925 -3929"9221 Expanding the matrix equations in eqns. 29b and 29d results in
E 030451 576-845 77-27215 156294-2 in(m - 1) simultaneous equations with m(m + 1)/2 unknown vari-

ables in R. In general, there are an infinite number of solutions.

From eqn. 13 we have the optimal block controllers in the block However, if k independent simultaneous equations exist, and

co-ordinate and original co-ordinate as k <m(m + 1)/2, then we can assume I[m(m + 1)/2 -k) constants
to solve k unknown variables in R. The choice of the assigned con-

u = [A - E, A2 - E2] X stants in R is a design freedom and a certain amount of experience
is helpful. In this example, we assume RII, which is the first leading

[28.3576 - 1307.82 ' 5"3829 0'30451 diagonal element, is unity. Thus we can solve for R and Fin eqn. 29a

772774 156157-4 0-304513 475-476 J as

(25a) R 1 2'929341 =
IA r~-E, "A2 -EdrT't R = 558052= FTF (30)

. 2"92934 51058"01562

[0-36296 0-279346 10-53829 0.003045] where

0'598572 0-795425 i 0-0304513 4-75476 j 0.999916 5737 x 10-s
(25b) F3 1

[0.0129466 225.96
(b) The optimalblock-controller design via assigned control specifl-

cations Note that R is a positive.definite matrix. From eqns. 30. 29c and

The design goals are specified as follows: 29e we can solve for Q11 and Q22 as

(i) static decoupling
(i) final values of the unit-step responses are unity Q1- 345.55808 2.929341wn + 7 629.0S

(iii) peak time tP that is the time required for the unit-step res. 12-929341whA + "7629.05 51058.0156w4-76070451 x 0!
ponse to reach the first peak of the overshoot is near 0-01 s (3a)

(iv) maximum percentage overshoot is less than 10%.
To reach the first design goal, the characteristic matrix polynomial is [ 4 22 - 140'5813

defined as 4tw -I'-10S1defined s Q' =[2.929341(4Ow.n - 2w., ) - 2844.916

A (s) = 12s' + E2s + E (26)

where
2~w~ 02 ~ 0] 2-929341(4t'w,, - 2w') - 2844-916(tb

E2 0 and /L' = 0 51058'0156(4/ 2w -2w )-524561317"4]

t (damping ratio) and w, (undamped natural frequency) are unknown Substituting w., = 300 and t = 0-75 into eqn. 31 yields positive-
parameters to be determined. To satisfy the third design goal we can definite matrices Qis and Q21. Thus the optimal block controllers
estimate o, from the following rule of thumb in designs 6 as can be easily found in the block co-ordinate and in the original

n -314 co-ordinate aswn-- -300 rad/s (27a)
tp 0-01 u = [A, -E, A 2 -E 2)X

Also, from another rule of thumb, 6 we can estimate t to meet the

fourth design goal as [89981-4329 2622-1 1438.1433 262-21

lnm. n 0-1 .7 5  (27b) [0-005214 89863.171 0 3486 X (32a)

7r 3-14 =
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(A1  -E, A2 -E 2J T'z To achieve the first and second design goals we add a forward-gain
matrix If as shown in Fig. 1. The H can be solved from the block C,

[-1767-7 1357-37 43-8143 2-6221 in eqn.9d or

1-2182 -021391 0 3'48632] 1498 95150 1 19842349 152-2581

The block-weighting matrix Q in the block co-ordinate and the [85-2 1240001 3 136336 -0023971
weighting matrix 2 in the original co-ordinate are

(34)
8.1 x 109 2-37277 x 1010 0 0 Thus the design system is

2-37277 x 10"1 4-13569 x 10o14 ! 0 0Q = ~~~~~y~ ) -_ 
__ _ -[I - - - - - - - -W 0] r Ri(s)]0 0 11703-42 31850-2 -y

2(s)J s
2 +2F.7+- 0 I R (s)

0 0 318502 80169820 j"

(33a) - 90000 [I 0[ Ri(s) 1 (35)
and S2 +450s+ 900000 J[ R(s)J

3253160 -2454610 1  47-2383 - 2-91217 For this real nontrivial system the designed system is not only static
- 23decoupling but also complete noninteracting, and the final values of=  

- 2454610 18784401 -33'808 - 5.9383 the unit-step responses are unity. The peak time is 0-014s and the
(33b) maximum percentage overshoot is 1%. The simulation curves for unit-

S-1step input are shown in Figs. 2 and 3. Comparing the design results
- 2-91217 - 5-9383 ; 31-8502 8016-982 of the proposed method with those of McMorran 14 and Tiwari et

al.,'s the present result gives less overshoot and less oscillatory res.
It is noticed that2 any arbitrarily prescribed closed-loop poles or ponses.
control specifications may not result in a positive-definite matrix R
and nonnegative-definite matrix Q. The constraints suggested by
Anderson2 should be satisfied. In addition, some reahstic constraints
to the amplitudes of the control signals, for example the limitations 1
of the actuator amplitude and rate change of amplitude, should be
also examined.

o proposed method and McMorroris method

r C 00 0 05 010 015 020
H ga- 2S

K 0

Fig. 1
Structure of designed system

yi2

1 001 005 010 015 020

b

Fig. 3
000.- . 020 Responses of various designed systems to a unit step in r2

0

McMorrn's method
.. proposed method. t 

= 
0-75; w n = 300

-- - proposed method. 0 = 1,; R = 12
1 Twarl's method: Q =,; R = 1,

y2  5 Conclusion

o. . 7 --- , ~ A new method, based on a state equation in the phase-
OOZ 1005- 010o 015 2o0 variable block co-ordinate, has been presented to determine the

- propcsed method S optimal block controllers for a class of multivarlable systems. The
t, b reverse process of obtaining the optimal block controllers has been

used to determine the weighting matrices of the quadratic perfor.
n ce index.

Fig. 2 When a multivariable dynamic system is formulated in a matrix
Ato a unit step in r differential equation, the proposed method is mote suitable for theResponses of various designed systems determination of the optim. controllers than the conventional

,, = lapproach. Also, it is simpler to determine the weighting matrices than
SMcMorran's method: the conventional approaches. However, the proposed method is limited- proposed method: t= 0-75; wn = 300 to a class of multivariable systems whose state enuations can be

- -.... proposed method: Qj I,:R =I formulated into matrix differential equations or the state equations
Tiwarl's method: Q I = 1, in the block companion form.
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ibid.. 1911, 118, pp. 813-815

14 MeNIORRAN, P.D.: 'Design of Zdis-iurbine controller usiiig inverse Nyquist where
method', ibid., 1970. 117, pp. 2050--2056

IS TIWARI, R.N, I'URKAYASTIIA. P., and TIWARI, S.N.. 'Synthesis of All A121 0 Ox in1
stable and optimal controllers for a 2-shaft gas turbine', ibid., 1977, 124, A, =Ki'A,K, = - - , K-=X'B, = I
(12), pp. 1243 -1248 LA21  A,211 tl Xmn

16 OGATA, K.* 'Modern control enginerng' (PreniicectHall, New Jersey, -
1970), pp 216-258 C = CoK, AllGR x r, AT,, Rrxm"J., Em Xr, and

8 Appendix 4122G Rm x En
Block linear transformation To obtain (lie required 3taie equation in eqn. 38, we perform the5

Consider a class of comspletely controllable, linear, time- scn iertasomto

invariant, niulti-input, multi-output systenm x, (t) = X2zl (t) (2~

.i~)= Ao xo(t) + Bouis(t) (36a) where

y(t) = COXo0r) (36b) rQ-t 1x -i- "iOXm (42bs)
where AGER'x ", Bo GRnxm i, C0 (E RIx H x 0 (,) G Rn X I, K2 = ,2 Q 'm m 1 K1 ' = IQ, m
yQt) E Ri I ',uQ) G Rm x I . Assume that 1, mn <nz and n/rn = k (an and I I1 1 J0 IXi
in t e g e r ) a n d d e f i n e r = it- mn . B y a lin e a r t r a n s f o r m a t io n I Q 2 1 = [ l . . q r , . . q ] 4 c

X00) = iit)(37) 1Q1 I H=[ 2 .. q ~ 1 .. q] 4c
We ishto onsruc astae euaton n te ontollbleblok T designates the transpose of the msatrix. The unknown matrices

companion formcolumn vectors q1) can be evaluated as follows.2 1
it)= A Izl(t) +8B2 u(t) (38a) From eqn. 42a, 4]a and 38c we have the matrix equation 'K-1,1, ~~ ~ --AK' 4a

At) = CIzI(t) (38b) 2'? 2 oi 4a

where or

0, 1m Onm Onm... on, [Q: Orxm] [A.: A121 fOi42 , 0 XmI 0m 0m Im 0
n- m IQ2 ImXmJ ,. 2 21 A2  A22I Q 'nXm

A. - (43b)

A, = ----------------- Q 111 =m.. 1 IQ + l Q
-D, -D. -D, -D, .. ~-Dk - A~i, =A1 2 Q (43c')

(38c0 and

O r X in 0 2,11, +422 A21Q1 +A 22Q2
B, T1'Bo 1 IC 1  CuTl fN,,NV2,. -,Nk),

1Q i 21112 +422 = A 2. (43d)
(38d) Performing a transpose operation ott eqn. 43c' and substituting eqns.

A,, GRr XrA,, GR rX ',A 2 1 6Rin Xr,andA22 6Rin x m. 38c and 42c into it, we have the following recursive formulas:
The constanit matrices A ER' x in and AllERI X m are called block AT' 1 = ~ fri , - 4a
elements ard tise mtatrix 'mn =1 xr GeR' X ' is an identity matrix. ql= mi fo i=(4a
Tile matrices Om = 0 xm 1ER' ' and OrxmEGR rX , are null !,Tq, = 0 .X for i = 1,2_,.r-pti (44b)
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and and

12 qr-m for i = 1,2,..., in (44c) I 0' 0 0

where el is the in x I unit column vector whose ith element is unity, [rr 81 0 I 0 0
and all other elements tre zeros. Eqn. 44 can be further simplified as Ki = X BI 0
follows: OMX r 1 0 0 lo 0

(i) fk 2 then 0 01 0 100.

and q = (,T)" e' for i = I, 2....in (45a) Applying the recursive algorithm in eqn. 45a, we havean 12[o
q.., = 4jTqj for i = 1,2,...,m (45b) 1498 852

(i) Ifk>2, then q 1  = 195150 124000

q, , 12 )11 I. x fori 1,2 _.. i (45c) I. 1.52258xO
ATT (,IT)k-3 1
AT (AT)k-2 el q2 =(T)-'e2 = 114.98 85-2 1 [01

L95150 '24000 1 I
and

q ,+d -qjq. m+j for i = 1,2,.... m andi [ 136336x 10"s1

= 1,2...k-1. (45d) -239708 x 10-6]

When the square matrices in eqns. 45a and 45c are not bingular, the and

q, in eqn, 42 can be obtained. Note that the determination of q, in - 1-268 1-0021 [1-98423 x 10 "2l
eqn. 45 only involves one inversion of a matrix. Thus the transform- q, = A, 1 q = 

=
ation matrix T, in eqn. 37. which links the co ordinates xO (t) in 1-0,041528 -1.957J [ -5225 0 2

I eqn. 36 and the required co-ordinatesz, (t) in eqn. 38, is

xo(t) = KIK 2 zI(t) = TIz(t) (46)= 404164 x 10-2

It is beheved that the block linear transformation T, is new. -288984  0"1

An illustrative exaple [--l-268 1.0021 [ 1-36336x 10-1

Consider the dynamic equation of an actual gas-turbine system ' 3  q4 = , 1q2  [-0.04528 -1-9571 1-2.39708 × 10"6
which is completely controllable and observable.

=o(t) =Aoxo(t)+Bou(t) -96893 x l0- (49)

y( ) = CoXo( ) (47) 4 .073763 x 10- 6

where The transformation matrix K2 in eqn. 42b is

0 002-198423 x -07 1.52258 0 - s  0 0
AoI0 -0 -0 i '~

0- .36336x 10"' -2-39708 x 10- 6  0 0

- ---- - -co = - - - - -
0 0 4-04164 x 10-' -2-88984 X 10-2 1I 0

oo 0~,, |I
=1 1001 0 ol 01- 1-96893 x 10- 4-073763 x 10-6 '0

BI to 0 1 00The block linear transformation T, in eqn. 46 is
0 100 Xo(t) = KK-zl(t) = Tizi(t) (50)

n=4, I=i =2, r=n-m=2, and k=n/m=2. The block com-
panion form in eqn. 38, the corresponding matrix transfer function, where
of this system are required.

Applying the linear transformation in eqn. 40 yields the state 14-98 95150 0 0
equation in eqn. 41 85-2 124000 0 0

II W = AxI(t)+Bgu(t) T, = 18.5671 -2622-1 10 0
y() = 1 xlt) (48) -5.21389 x 10-' 136-829 0 100

[1-268 -0-04528 14-98 95150 The required block companion form in eqn. 38 is

- tAI,1 2 -1 i(t) = Aizj(t)+lu(t) (51)
4=1 All 1.002 -1-957 85-2 124000

A , 0 0 o -lo 0 - -Y) = Ctz'(t)
[A211 0 1 -0 0 whereI. 0 0 0 -100 h

0 0 : 1 0
0 i0 010 0 00 0 1 0 I

1 0 0 -18-5671 2622-1 I -11-8567 262-21

0 5-214 x 10-3 -136-83 I 0 -101-368
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0 0 where
0 0 C 1498 95150 0 0 N 14"98 95150e,=T C' =1 1 [, [ N =

( 85"2 124000N0 0 85"2 124000 i

0 1D, = 18"567l -2622 1

The corresponding mratrix transfer function in eqn. 39 is [-5214 x 10"' i36.831
Y(s) = N, + N2s] [D, + D2s + 12s2 ]T U(s) (52) D2 18567 26221 10

to 101"368] I 1

0 I,

I

I
I
I
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A geometric series approach to modelling discrete-time state
equations from continuous-time state equations

L. S. SHIEHt, R. E. YATESt, J. P. LEONARD+
and J. M. NAVARRO §

A geometric series approach for approximating the state transition matrix of a
continuous.tine state equation by it discrete-time state transition matrix is developed
in this paper. A discrete.time state equation is constructed for approximation of
the contintious-time state equation. The discretc-tin state transition matrix is
modified to derive a generalizel approximate nunerical differentiator. Also, it is
shown that several commonly used conversion prcmedures are special cases of this
method.

1. Introduction
The accurate description of many practical systems often require high

order continuous-time state equations. As a result, the simulation, realiza-
tion and -lesign of these high order systems are difficult. However, if the
high order modelled continuous-time system can be represented by a discrete-
time state equation, the analysis and implementation can be more easily
accomplished by use of either a digital computer or a microprocessor. There
exist several methods for converting the continuous-tinie state equations to
the discrete-time state equations. One nltthod involves analytical deter-
mination of the continuous-time state transition matrix of the system and
converting it to the (liscrete-time state transition matrix for obtaining an exact
discrete-time state equation. However, for a large system, this method is
imrractical. Another popular method (Bosley 1977) involves determination
of an approximate transition matrix by truncating an infinite series that
represents the exact state transition matrix. The truncating error of this
approach depends heavily on the number of terms and the sampling period
used. Other methods have been based on Tustin model (Cadzow 1973),
Walsh function (Chen and Hsiao 1975) and Block pulse function (Shieh et al.
1978). These methods allow representation of a continuous-time state equa-
tion by an approximate discrete-time state equation derived from the trapezoid
rule. In this paper, it will be shown that the approximate model (Cadzow
1973, Chen and Hsiao 1975, Shieh el al. 1978) so obtained is a special case of
the models proposed.

A geometric series (Sherwood and Taylor 1952) approach is presented in
this paper to approximate the discrete-time state transition matrix. Then
the approximate discrete-time state transition matrix is used to construct an
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approximate discrete-time state equation. Also, the approximate discrete-
time state transition matrix is modified to derive generalized approximate
numerical differentiators (Jury 1964, Tou 1959).

2. Derivation of approximate discrete-time state equation

Consider the system represented by the continuous-time state equation

i(t) = Ax(t) + Bu(t)

(1)X(O) = a

where u(t) is the continuous-time input function.
For practical consideration (Jury 1964) we are interested in staircase

inputs, or
u~t) = u(kT)

Au(k)

for k=0, 1, 2, ... , and T=a sampling period and kT<t<(k+ 1)T.
The solution of eqn. (1) is

x(k + 1) = 'F(T)x(k) + Lu(k) (2 a)
or

k-1

x(k) = (I(T)kx(O) + Z 'D(k-j - 1)Lu(j) (2 b)
J-0

where
x(kT) -x(k)

x(kT + T) -x(k + 1)

(D(kT -jT- T) A 41(k - -1)

O(T)k =the continuous-time state transition matrix

= [exp (AT) ]k= C (A TFi (2 c)

T CO I
L= I exp (Aa)Bdo=T , (AT)JB

0 J-o (j+ 1)!
= [exp (A T) - I]A-IB = [¢D(T) - I]A-1B (2 d)

where
a=T-A

For ease in implementation and manipulation we are interested in repre-
senting a continuous-time state equation by a discrete-time state equation:

xo*(k + 1) = Dxo*(k) + Eu(k) 3

Xo*(O) =x(O)
where xo*(kT) -xo*(k) =x(kW)

xo*(kT + T) Axo*(k + 1) .-i(kT)
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The solution of eqn. (3 a) is
t-[

x_*(k) = Dkx(O) + Dj-lEu(j) (3 b)

where

Dk= [(Io*(T) ]k is the discrete-time state transition matrix

- [O(T)]k=[exp (AT&)]k (3 c)

E = [D- I]A-'B " [O(T) - I]A-B (3 d)

A natural question is how accurately can one approximate P(T) by D ? One
popular method is to approximate ((T) in eqn. (2 c) by truncating the
infinite series; i.e.

T I+A2 (AT)3 + (AT)4+ (4 a)

I + AT (4 b)

-I + AT + (AT)2  (4 c)

"I + AT + I(AT)2 + (AT)3 (4 d)
2! 3.

I+AT+ I.(AT)2 + I.(AT)3 + (AT)4  (4 e)
2! 3.!4

If a sufficiently large number of terms in eqn. (4 a) is used, a satisfactory
approximation may be obtained. However, the approximation error depends
heavily on the number of terms and the sampling period used.

This paper introduces a geometric series which accurately approximates
the infinite series in eqn. (4 a). Now, rewriting eqn. (4 a)

$(T) = -exp (AT)

=I+AT+ (AT) 2 +...+ (AT)J+V (AT)J+ J

((j+2)!(A T)J+2 + (A T)i 0 +..

S (AT)J+ , + ()

Keeping the first (j+ 1) important terms in the infinite series of eqn. to) and
approximating the rest of the terms in the equation by a geomcluric series
with a weighting factor 1f(jn)(j!) for the term (A T)J+ n (rather than I[(j +n)!=
I/(j+n)(j+n- 1) ... (j+ l)(ji) for the same term) in eqn. (5), we have an
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accurate approximate model; i.e. the approximate model of (D,*(T) using
the proposed geometric series is

(O*(T)=I + AT + (AT)2 +... + (A T)ij+ (A T)j-
1 1

+ - (AT)f2+ (AT)j+3 +

+ (AT), +... (6 a)

=I+AT+. (AT)2  . (AT) ]+-AT

' I (T) 3 + .. +j-- AT)"+ .. ] (6 b)

I I
=I+ AT+F (AT)+ (AT)I AT] (6 C)

i1
(I- LAT) )(A) for T <jlI All (6 d)

ADj for ji= 1, 2, 3,... (6e)
where [[All is a matrix norm.

Note that the infinite series in the brackets of eqn. (6 b), or the term(I-(Ifj)AT]-' in eqn. (6c), is a geometric series. The subscript of D in
eqn. (6 e) indicates the value of the weighting factor j to be used in the
infinite series.

For example, when j--2, eqn. (5) can be approximated using the method
of eqn. (6) by

D(T) =I+ AT+ (AT) 2 + (AT) 3 +I (A T)'+:-1 +... (7 a)
! 4!~+ -  5!~

=1+ AT +. (AT)2 + A() ( (7 b)

+ (2)(2(2) (A)5+)-(T (7 c)

=I+ AT+ (AT)2+ (AT)3 + (AT)4+j (AT)s+... (7d)

=I+AT+ (AT)2+ F 2-(AT) (7e)

I I
I T+J( )2l+IT 12(AT2 ( )3-.. (/
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=I + A T + (AT)2(I- IAT)-1  '7 q)

=(I-AT)-(I+AT) for T<2/IIAI (7h)

AD2  (7 i)

The infinite series in the bracket of eqn. (7 /) is the geometric s.eries. Com-
paring eqns. (4 c), (7 e) with (7 b) we note that the iirst three terms in all three
equations are identical, but the other terms differ by their weighting factors.
That is, zero in eqn. (4 c), and 1/(2J- 1) in eqn. (7 e) and 1/j! in eqn. (7 b).
Both eqns. (7 b) and (7 e) are infinite series. Clearly eqn. (7 e) is more
accurate than that of eqn. (4 c).

In a like manner, when 3 = 3, we have

4(T)=I+AT+ (AT)2 + (AT)3 + I -j (AT)' (8 a)
~1AT~AT2+.AT3 .rS( (AT)i (8ba)21 31

=I+AT+2 (AT)2+ (AT)3 I+AT+I(AT)2 +...J (8)

=I + AT + (AT)2+4 (AT)(I-AT)-1 (8 d)

=(I.- AT)-l[I +jA'r+ (AT)2] for T <3/hjAjl (8 e)

=D1*(T) (81)

AD 3  (8 g)

Comparing eqns. (4 d), (8 b) and (8 a) we note that the first four terms in all
three equations are identical, while the others differ by their weighting
factors : zero in eqn. (4 d) ; 1/(3-3)(3!) in b in. (8 b) ; and I/j! in eqn. (8 a).
Also, comparing eqns. (7 e), (8 b) and (8 a), we observe that eqn. (8 b) consists
of one more important term, (I[3!)(AT)3 , than that of eqn. (7 e) and the
approximation of (I/(3J-3)(3!))(AT)i in eqn. (8 b, to (IIj!)(AT)J in eqn. (8 a)
for j =4, 5, ... is better than that of (l2J-1 )(AT)i in eqn. (7 e) to (1/j!)(AT)J
in eqn. (8 a) for j = 4, 5 .... Therefore, the approximate model in eqn. (8 e)
is more accurate than the model in eqn. (7 h). The approximate models of
Dj, for j - 1, 2, ... , can be obtained from eqn. (6 d) and are as follows:

D (I- A T)-' AD

-(I- AT)-(I+ AT) AD 2

(I - kAT)-[I + JAT + k(AT)2) D3

.(I- JA T)-'([I +A+ +(A T)2 + j(A T)3] A D 4

( - A T)-'[I + *AT+ P(7A T)2 +-'6(A )3 + Th(AT)4] A D5

(9 a)

s.s. 5

"_ _ ___
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D2 in eqn. (9 a) is a commonly used model (Cadzow 1973, Chen and Hsiao
1975, Shieh et al. 1978, Jury 1964, Tou 1959). In general, the larger j used
in eqn. (6) provides a more accurate model.

Substituting the approximate models Di in eqn. (9 a) into eqn. (3 d) yields
the input matrix E, or

E=(D-I)A-IB
I T(I - A P)-IB A El

T(I.- JA T)-IB A- E 2

ST(I - AT)-I(I + JAT)B A. E3

T(I - JA T)-'[I + %A T + - I(A T)2)B A E4

- T(I- JAT)-I[I + ?AT + (AT) 2 +r (AT)3]B A Es

(9 b)

An alternate form of eqn. (3) is

x*(k + 1) = Gx*(k) + Hu(k) (10)

x*(0) =x(0)

The 0 can be obtained by modifying the exp (AT) as follows:

G exp (AT)=[exp (- JAT)]-1 exp (JAT) (1)

An approximation of exp (JA T) and exp (- JA T) can be obtained from
eqn. (6) by replacing T in eqn. (6 d) by IT and - IT, respectively. Finally,
we have

Gt-[exp (-IAT)]-' exp (JAT) (12 a)

([I+ AT [I+ I)(ji) (AT)'(P + FIJ j., (21)(j)(fl) 1

X I-I A]-,[ I+ - ( Ti (126
F3L Ij A- (2)(j)(fl)

AG, for j=1, 2, 3, ... (12c)

AQj-1 P, for j=1, 2, 3,... (12 d)

where

Q -( A][+ )(j -'!) (AT)' (12 e)

APj= I +-LAT I+ ,Z(,()i)(AT)'  (1)

The approximate system matrices Gj for j = 1, ... , 4 are
G, =(I - JA T]-I[I + JAT] = QI- P, (13 a) ]

G2=[I-JAT+ -(AT) 2 ]-'[I+ [AT+ k(AT)2] =Q 2
- 1 Pq (13 b)
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G., [I - JA T + )(A T)2 - rhI(A T) 3 ]-1

x [I+ AT+W(AT)2 +-f-1i(AT) 3]=Q -1 P3  (13 c)

G4 =1[I - ,APT+; (AT)2 --,r , (A T) + T-&j(A T)*]-l

x (I+ 1A -A(AT) 2 + y-(AT) 3+Tn (AT)4]=Q4-1 P4  (13 d)

The approximate input matrices H, for j = 1, ... , 4 are

H =[G-I]A-IB (14 a)
or

H, = T[I- IAT]-IB (14 b)
H2 = T[1 - IAP+ -&;(A T)2]- B (14c)

H3 = [I- A T + ' (A T)2 - -41-I(A T)3]-'[I + Y'E(A T)2]B (14 d)

H4 .[I- A T + - (A T)2--(A 7)3 +-1 -k"(A T)4]-1

x [I +r(AT) 2]B (14 e)

Noting that the coefficients of Q and P in eqn. (13) are identical except for
signs, we will derive a general equation for an approximate numerical
differentiator.

3. Approximate numerical differentiator
When u(t) in eqn. (1) is a given input function in the analytical form or in

discrete form, the input function u(t) is often approximated by a trapezoid
rule

u*(k) =u(k + 1) + u(k) (15)
2

where
u*(k) -u*(kT)

The approximate discrete-time state equation is

x*(k + 1) = Gx*(k) + Hu*(k) (16 a)

=Q-1 Px* (k) + Hu*(k) (16 b)

where G and H are shown in eqns. (12) and (14 a), respectively. For example,
if G=G, in eqn. (13 a) and H=H, in eqn. (14 b) are used, we have

x*(k+ 1)=(I- IAT)-'(I+ AT)x*(k)+ T(I-.IAT)-IBu*(k) (17)

Equation (17) can be derived from eqn. (1) by using the Walsh function and
the Block-pulse function approaches (Chen and Hsiao 1975, Shieh et al. 1978).
Therefore, it is seen that the approximate discrete-time model obtained by the
above approaches is a specitl case of the models presented in this paper.
Since the coefficients of Q1 and P in eqn. (13) are identical except for signs,
we can derive a generalized approximate numerical differentiator as follows.

Taking the z transform of eqn. (1) when u(t) = continuous input functions
yields

Z[i(t)] -AZ[x(t)] + BZ[u(t)] (18 a)

S5E 2

A! _



II

1422 L. S. Sieh et al.

or
Z[d(kT)] = AZ[x(kT)] + BZ[u(kT)] (18 b)

=zx(z) - zx(O) = Ax(z) + Bu(z) (18 C)

Also, taking the z transform of eqn. (16) for j = 1 we have

Z(x*(k + 1)1 = Q,-' PZ[x*(k)] + HZ[u*(k)]
or

zx*(z) - zx*(0) = (I - JA T)- 1(I + A T)x*(z)

+ T(I - A T)-IB .(z+1 u(z) (18 d)
2

Rearranging eqn. (18 d) yields

2 (z-1) *() -2 z (I -AT)x(O) = Ax*(z) + Bu(z) (19)

T FZ+) T (z+) I

Comparing eqns. (18 c) and (19) we have

2 (z-1) xz 2 z
S -+) z+)(I-AT)x(O) (20)

Equation (20) is the approximate numerical differentiator which is often used
to determine the inverse Laplace transform of a continuous-time state equa-
tion (Jury 1964, Tou 1959). The general representation of the approximate
numerical differentiator, based on the approximate models presented in this
paper, is

_ AT (PQ)1 (P Q 2 (z- 1) x*(z)Z[ (t)]= -- -( j Q )2P +Q ). (z + 1)---- Z

A AT(P -Qi)-' Qj 2 (z+ )X(0)

(z- (z1)
A A(pj- Qj)-'(pj + Qj) (L-) x*(z)

(z +-1)

z2A (Pj -Qj)-I Qj (-+-1) x(O)  (21)

where Pj and Qj are shown in eqn. (12).
For example, if G=0 2 =Q 2

1 P2 and H=H. in eqns. (13) and (14) are
used, we have

2 (z-1)Z[_ (tfl ([I + *(A T)2] T (T_ )x*z

- JAT+-&(AT)] 2 z )x(0) (22)

V -
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4. Illustrative example
Consider an unstable continuous state equation

.(t) = Ax(t) + Bu(t)

x(o) =XO (23)
where

A=[ _2 , = 2 0, xO) I x(t)= fxIM)3i 1 1[X 2(0]
and u(t) is the unit-step functions.

The discrete responses, x(kT) at k=0, 1, ..., 4 and

T= <2/(131 + I -41) = 2,

using the approximate numerical differentiators for j= I and 2 in eqn. (21)
are required.

When j = 1 in eqn. (12) we have

Q=I-JAT
(24)

P1 =I+ A'J

The corresponding approximate numerical differentiator can be obtained
from eqns. (21) and (24)

(z- 1)Z[.t(t)] - A(P - Ql)-,(P1 + Q,) -- ,) X*(z)

- 2A(PR -Q 1 )- 1 Q1  - x(o)
(z + 1)

2 (z-1) *(Z)- £ (1- AT) z x(O) (25)
T T+1) T (Z+1T

Taking the z transform of eqn. (23) and substituting eqn. (25) into it we
have

*(z) -zx(O) = (1 - AT)-'(1 + 4AT)x*(z)

+ T(I - A T)-B +) u(z) (26)

The corresponding discrete state equation is

x*(k + 1) = (I - JA T)-1(I + JA T)x*(k) + T(I - JA T)-Bu*(k)

= Glx*(k) + Hju*(k) (27)
where

F 1*46 1538 0-4 102561 [0-666666 0-05 12821
1 ] and H, = I

[0-.615384 0.435897J L0.333333 0.179487J
and

U* (k + 1) +u(k)
2

u*(k)= 2

4.
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Equation (27) is a commonly used model (Shich et al. 1978, Jury 1964, Tou
1959). When j=2 in eqn. (12) we have

Q2=I- AT+ -(AT) 21
(28)

P 2 =I + AT+ jg(AT)
2J

The approximate numerical differentiator in eqn. (21) becomes

(z- 1)
S T (z4 - + T .

2 z-[I- AT+-(AT)2] .--(z x() (29)
T (z +1) () 29

The corresponding discrete state equation is

x*(k + 1) = [I - I A 7' + g-,(A T)2]-1[I + AT+ -(A T)2]x*(k)

+ T[I - JAT + -*(AT)2]-Bu*(k)

= G2x*(k) + H2u*(k) (30)
where

2 1.456106 0.3939091 -0.653061 0.051830]I2  and H2 =

L0.590865 0.471331J 0.326531 0.171039J
and

u(k+ 1) +u(k)

The exact solution of eqn. (23) is

x(t) = -exp (2t)- exp (5-t)- (31 a)

x2(t) = exp (2t) + exp (- 5t) - 1 (31 b)

The responses at the sampling instants k = 0, 1,..., 4 of the exact solution and
the two approximates are shown in Table 1 [state x,(kT)] and Table 2 [state
x 2(kT)]. From Tables I and 2 we note that better results are obtained with
the improved model.

Exact solution Approximate solution
k 1T

Eqn. (31 a) Eqn. (27) Eqn. (30)

0 0.00 1 1 1
1 0.25 2'544 2'589 2'555
2 0"50 5.006 5,145 5,040
3 0.75 9.042 9'380 9'123
4 100 15'689 16'436 15.867

Table 1. Comparison of state x1(kT).
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Exact solution Approximate solution
T1'

Eqn. (31 b) Eqn. (27) Eqn. (30)

0 0.00 1 1 1
1 0.25 1.558 1.564 1.560
2 0.50 2.728 2.788 2.742
3 0.75 4.728 4.894 4.768
4 1.00 8-046 8.419 8.135

Table 2. Comparison of state x(kT).

5. Conclusion
A geometric series approach has been presented for determination of a set

of approximate discrete-time state equations from the continuous-time state
equations. The approximate discrete-time models have been modified so
that a generalized approximate numerical differentiator can bp derived. It
has also been shown that several commonly used conversion procedures are
special cases of the method given in this paper.

We have also shown that the proposed geometric series approach approxi-
mates the exponential matrix infinite series in eqn. (5) by taking a finite
number of dominant terms and an infinite number of the other terms of the
matrix series expansion rather than taking a finite number of dominant
terms only. However, the method requires a matrix inversion and the
approximate models are valid only in the region where the geometric series is
convergent, that is the sampling period T for the models in eqn. (6) is limited
to T<j/IIA Ii. These are the limitations of the proposed approach.

Despite these limitations, the proposed models can be effectively applied
to perform the numerical integrations of stiff functions because the most
commonly used model (i.e. G1 in eqn. (13 a) and H1 in eqn. (14 b) (Cadzow
1973, Chen and Hsiao 1975, Shieh 1978), which is the lowest order model
proposed in this paper, has been successfully used for evaluating the responses
of stiff functions (Chen and Hsiao 1975). Furthermore, a higher order model
that uses a larger weighting factor j makes possible the use of a larger
sampling period P. This observation can be verified from the fact that T
is proportional toj (i.e, T <j/fjAjj in eqn. (6)). This result will greatly increase
the flexibility in determining the common sampling period among various sub-
systems of a large sampled-data control system.
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A method for modellivg transfer functions using dominant
frequency -response data and its applications

L. S. SHIEHt, M. DATTA-BARUAt, and R. E. YATES$

This paper presents a fur,damental method for modelling transfer functions using the
basic performance specifications and frequency-response data at the dominant
frequencies. A set of non-linear equations is constructed from the definitions of the
basic performance specifications, the dominant frequency-response data and the
unknown coefficients of a transfer function. A Newton-Raphson multidimensional
method is applied to solve the non-linear equations. Four methods are given to
construct approximate representations of the desired transfer functions for the
estimation of good starting values to ensure rapid convergence of the numerical
method. The applications of the proposed method are: (1) developing a standard
model and/or a transfer function of a filter or a compensator using the specified
dominant frequency-response data ; (2) identifying the transfer function of a system
from available experimental frequency-response data; and (3) reducing high-order
transfer functions to low-order models using dominant frequency-response data.

1. Introduction
The nature of the transient response of a system is often characterized by a

set of performance specifications in the time domain such as the settling time
and the rising time. In the frequency domain, another set of performance
specifications (Gibson and Rekasius 1961) is used to represent the charac-
teristics of the system performance. The bandwidth and the phase margin
are typical examples of the frequency domain specifications. In designing
compensators and filters, and in predicting the nature of time response of a
system, practicing engineers are often interested in the dominant poles. These
can be converted to a damping ratio and a natural angular frequency specified
in the complex plane. These specifications are often called the complex-domain
specifications. The engineer is also interested in various error constants (for
example, the velocity-error constant), which represent the charafteristics of
system performance in both time and frequency domains (Truxal 1955). The
frequency-response data at the frequencies of the frequency-domain specifica-
tion are considered as the dominant frequency-response data in this paper
because these data characterize the nature of the system responses. For
example, the phase margin (0.) of a system at the gain-crossover frequency
(wc) is often used as a measure of additional phase lag required to bring the
system to the verge of instability. Also, if the phase angle of the open-loop
system at the wc is near - 1800, then the response of the closed-loop system.will
be oscillatory.

Received 5 July 1978.
t Department of Electrical Engineering, University of Houston, Houston,

Texas 77004, U.S.A.
$ Guidance and Control Directorate, U.S. Army Missile Research and Develop-

ment Command, Redstone Arsenal, Alabama 35809, U.S.A.
0020-7721/79/1010 1007 $02,00 C 1979 Taylor & Francis Ltd

s.s. 4 z

7_____



h I

1098 L. S. Shieh et al.

In the design of a control system in the frequency domain, the specifications
d1,uvo u ije dominllat frequency-respunse data arc usuaiiy considered

as design goals. Various frequency-domain or complex-domain approaches
(Nyquist 1932, Evans 1953, Bode 1954, Thaler 1973) have been developed and
widely applied in industry for compensator designs to achieve desired perfor-
mance. The most popular design methods are those based on the Nyquist
(1932) plot, the Bode (1954) design, and the root-locus method (Evans 1953,
Thaler 1973). To improve the efficiency of the design methods, it is advan-
tageous to have the design goals expressed as mathematical functions or
transfer functions (defined as the standard models). Once standard models
have been ascertained, the corresponding time-domain specifications and
temporal responses can be determined from digital or analogue simulations of
the standard models. Also, the frequency-response data of the desired com-
pensator can be determined from Nyquist plots or Bode diagrams by comparing
the frequency-response curves of the original and the desired response models.
The required filters and compensators (Del Toro and Parker 1960, Thaler 1973)
can then be easily determined.

Empirical rules or rules of the thumb that link the specifications in the
time, frequency, and complex domains have been developed by Truxal (1955),
Del Toro and Parker (1960), Axelby (1960), and Seshadri (1969) et al. From
these results, it is observed that most time-domain specifications and complex-
domain specifications can be approximately converted to frequency-domain
specifications. Some of these frequency-domain specifications are phase
margin (0m), maximum value of the closed-loop frequency response (M.),
gain-crossover frequency (&e), peak value frequency (wop), the bandwidth (cb),
and velocity-error constant (K,). Other important frequency-response data
are : (1) the real part of the open-loop transfer function G(jw) at the phase-
crossover frequency (wa,) which has been used to define the gain margin (Gi) ;
(2) the real part and imaginary part of the closed-loop function (T(8)) and the
open-loop function G(8) at 8 = jo A jwe = jO. The data at w = 0 often indicate
the final value and the type of the system. In a type I system, l,[G(jO)] has
an infinite value, while Re [G(jO)] has a finite value from which an asymptotic
line (Del Toro and Parker 1960) can be drawn in a Nyquist plot; (3) the corner
frequencies in the Bode plot of G(jw) in the regions of wo--O, where
20 log I G(jw, 1)I = + 15 dB, and &J = c 2 where 20 log IG(jiW, 2)1 = - 15 dB.
Chen (1957) has shown empirically that the open-loop poles and zeros of a
system can be approximated by retaining the Bode plot in the regions of the
+ 15 dB boundaries. Some dominant frequency-response data are indicated
in Fig. 1.

Through use of the above dominant frequency-response data, a basic method
is proposed in this paper for modelling various transfer functions. First, a set of
simultaneous non-linear algebraic equations, based on basic definitions of the
dominant frequency-response data and the unknown coefficients of a desired
transfer function, is constructed. Then the Newton-Raphson method
(Carnahan et al. 1969, IBM 1977) is used to solve the non-linear equations.
However, as is well known, the Newton-Raphson method will often only
converge for a small range of starting values ; therefore, four methods are
developed in this paper for estimating good startihg values so that the numerical
method (IBM 1977) will converge rapidly to the desired solution.

I
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[G(JOl 
• :2.1

. Re[G(J .)]
. .9C 

3.2

{Re[G(J-,)) .1. -S..7

Figure 1. Nyquist plot of an open-loop system 0(s).

The applications of this method can be classified as follows.

(1) When the design goals are prcdescribed by the dominant frequency-
response data, which may be obtained from the frequency-domain
specifications (Gibson and Rekasius 1961) or equivalent ones (Truxal
1955, Del Toro and Parker 1960, Axelby 1960, Seshadzi el al. 1969),
and a standard transfer function is desired, this is a design problem.
Chen and Shieh (1970) and Wakeland (1976) have proposed analytical
methods for the compensator fitting. However, their methods are
limited to filters and compensators in which the unknown coefficients
can be solved by a quadratic equation. The method of this paper
overcomes this difficulty.

(2) The transfer function obtained in this paper is the function of the original
system. When dominant frequency-response data can be obtained
from experimental data of a practical system and the mathematical
function of the system is desired, this is an identification problem.

(3) When the dominant frequency-response data are obtained from a given
high-order transfer function and various low-order approximate models
are required, this is the model reduction problem. The reduced models
obtained in this paper have the same selected dominant frequency-
response data as the original system. Thus, the design processes in the
frequency domain can be greatly simplified.

4E2

I

. . .._ _ 4 I I



1100 L. S. Shieh et al.

2. Modelling non-linear equations
Given a transfer function T(s) of a unity ratio feedback closed-loop systembos + b .94-q _S_ L ... ,Sm n/ if(S)

ao+a,8+a 282+ .. +an nds = I7 s +1 G(8

where n(s) and d(s) are the numerator and denominator polynomials, res-
pectively, and aj and b, are constants. If the system is a type I system, the
open-loop transfer function G(s) i-5

G~s =K(1 +c,8+c 28+ ... +cVsP) P(s) (I b)( 1+) =d82 +doq) =q(8---

where p(s) and q(8) are the numerator and denominator polynomials. K, 1, ci,
and di are constants. K is a velocity-error constant (K,) if I = 1.

The equations for dominant frequency-response data are:

(1) System type is determined from

G(jwo) = Re [G(jwo)] +jlm[G(jwo)] at o = 0 (2 a)
or

G(jo)=Re [G(jo)] }_ for a type o system (2 b)

Re [G(j0)] =K(c, -d)

Im[G(jO)] = o for a type 1 system (2 c)

T(jQ) = 1L
ao

(2) Phase margin gives
#m 1800 + L G(jwo) (3 a)

where
G(j e) =1 (3 b)

wC is the gain crossover-frequency.

(3) Gain margin yields

Cm Re [G(jo.)] (4a)

where L_ G(j,,,,)= 180' (4 b)

w, is the phase crossover frequency.

(4) M=jT(jwI =maximum value of the closed-loop frequency
response (5 a)

where
dIT(jw)I =0 (5b)

dw w-wp

WP is the peak value frequency.

.eI
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I(5) 1 T(j wJb) I = 7 2-- (6)

where Wb is the bandwidth.

(6) ] (joi.1) I = 5.6 (7 a)

or
20 log IG(jw)I = + 15 dB at o=o 1j (7 b)

and

I G(jw 2)I =0.18 (7 c)
or

20 log IG(jw)= -15 dB at W=C,12  (7 d)

A set of non-linear equations can be formulated from the basic definitions
of the assigned dominant frequency-response data in (2)-(7). The procedures
can be illustrated by using the following example. The dominant frequency-
response data in (2 c), (3), and (4) are shown in Fig. 1, which are marked as
A, B, and C and given as follows:

(1) Re [G(jw)]= -2.1 and Im[G(jwo)]=oo at wo=0 rad!.h

or T(jwoo) = I at co = 0 rad/s (8 a)

(2) Re [G(jw,)]= - 1.5 at cu= 1.9 rad/s (8 b)

(3) LG(jw,,)= - 180* at c,,= 1"9 rad/s (8 c)

(4) ,= 1800 +/ LG(jw,) = 5.70 at w= 32 rad/s (8 d)

(5) IG(jw,)I = at w=3.2 rad/s (8 e)

Five conditions are given in (8). Therefore, various transfer functions with
five unknown coefficients can be constructed. Assume that the desired
transfer function Td(8) is

bo + b18 + b282 (9 a)T ) =ao + a,8 + a282 + a.0a

From the conditions in (8 a), it may be observed that the system is a type I
system. Therefore bo=a o . Also, to simplify the equation we let a3 1.
Thus, we have

Td(8)= a.+b18+bs 2  (9 b)
ao + a,8 + a282 + ss

The corresponding open-loop transfer function Gd(8) is

G,1(s) = K(1 + 1s + C2
2) (10)

8(14- d18 + d282)

where

K a -. , _-b2, d, -b' and b 2 -
a, b , ao  al-b 1  a,_b,

V -.. - ____ ____
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Following the basic definitions and the assigned data in (8) yields a set of

non-linear equations:

(1) The assignment in (8 a), or Re [G(j0)] = -21, gives

h1(ao, al, a2, b,, b2)=atb 1-b 1
2 -aoa 2 +a0 b2 +2.1(a,-b)2 =0 (11 a)

(2) The specification in eqn. (8 b), or Re [G(jw,,)]= - 15 at co, = 1-9, yields

/2(a0 , al, a2, b, b2)= (a2 -b 2)(ao - 3.61b 2) -b,(al -b, - 361)
- 1-5[3.61(a 2 -b 2)2 +(a,-b 1 -3.61) 2 ]=O (11 b)

(3) The condition in (8 c), or L.G(joj,)= -180' at w,,= 1.9, gives

,'(a0, al, a2, b,, b2)= 3"61b1(a2 - b2)
+ (ao- 3.61bO)(a - b,- 3.61)=O0 (ll c)

(4) The specification in (8 d), or #m-- 5.70 at co, = 3.2, yields

4(a0 , al, a2 , b, b2)= 10.24b,(a 2 -b 2 ) + (a0 - 10.24b 2)(a, -b, - 10.24)
-0-319 402 24[(a 2- b2)(ao - 10.24b 2)

-bl(a-b 1 - 10.24)I=0 (11 d)

(5) The assignment in (8 e), or IG(jio,) = 1 at w,=3- 2 , gives

/,(a., al, a2, bt, b2)= (aO - 10.24b 2)
2 + 10.24b, 2

- 104"8576(a 2 - b2)2 - 10"24(al -b, - 10"24)2=0 (l ie)

Equation (11) is a set of high-order simultaneous non-linear algebraic equations
which are very difficult to solve. Considering the availability of the computer
program package (IBM 1977) (called the Z systems) in many digital computers
for the solution of non-linear equations, the Newton-Raphson multidimensional
method is suggested for solving these equation... However, it is well known
that the Newton-Raphson method will only converge for a small range of
starting values or the initial guesses. A set of good initial guesses must be
determined for rapid convergence of the numerical method. Four methods
are proposed for these good initial guesses.

3. The initial guess
It is well known that high-order non-linear equations have many solutions.

The solution and the speed of convergenc(- of a numerical method depend
heavily on the initial guesses or the starting v.dues. In this paper, the Newton-
Raphson method is suggested for solving the non-linear equations. The
following methods, depending on the applications of interest, are proposed for
good initial guesses.

3.1. Initial guess by a jnthesis method

Suppose only the dominant frequency-response data in (8) are available
and an approximate transfer function T,*(8) of the desired Td(s) in (9 b) is
required. The Td*(8) is

,(s) ao* + bl* s +b2* 82 (12)
ao* + a,* s + a2 * 82 + s

V
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where aj* and hi* are the starting values of the numerical method. The steps
to obtain (12) are summarized as follows

Step 1. Determine a second-order approximate transfer function T 2*(s)
using 5, = 7' and ue= 3.2 rad/s in (8 d) and (8 e). This T 2* (s) is

2

T2 +o(8),=W,1 (13 a)8/2*(=s + 2con8 4. Wn 2

where $=the domping ratio and wo, =le natural angular frequency. Two
non-linear equations, which are constructed from the basic definitions of j),
and 0, can be obtained. These non-linear equations can be converted into a
single variable (e or w3j) high-order equation from which the roots can be
determined. Using this approach, w- have f = 0.0498 and CO= 3"2079. The
poles that can be considered as the dominant poles of a system can be deter-
mined from the characteristic equation in (13 a). The dominant poles are

81,2= _ Wl ± jwV(l A)- = _ 0.1598 ± j3.2039 (13 b)

Thus, (13 a) becomes

10-2909
82 + 0.3194s + 10-2909 (13 c)

Step 2. Construct a third-order approximate transfer function T3 *(8) by
inserting in it a pole (s= -p) and modifying the term in the numerator of
T2*(,) so that the final value of the T3 *(,) equals to unity, or

P>Wn2 10'2909P (13 d)
(82 + 2 ew21 8 + &j.2 )(8 + P) (s2 + 0'3194s + 10'2909)(s + P)

The unknown constant P can be easily determined by using the condition in
(8b), or Re[G(jw,)]= - 1-5 where o,=-.. Thus, we have

P = 4.5401 (13 e)

Step 3. Establish another third-order approximate function T3**(s) by
inserting a zero in (13 d) with an unknown constant b,*.

b* +s+ PWn2 b* + 46"7216
7'-* (82 2 wna +wn)(s + p) (82 + 0'31948 + 10-2909)(8 + 4-6401) (13/)

The b,* can be determined by using the condition in (2 c) and (8 a), or
Re (G(jO)]= -21. lhe bl* is

b,* = 32-403R (13 .q)

Hence, we have
46.7216 + 32.40388

T3**(s) =46-7216 + 1174108 + 4-859682+8 (13 h)

Equation (13 h) can be considered as an approximate function of (12) by
assuming b2*=0. The initial guesses in (12) are a,*=46.7216, a,*=11.7410,
a2*=4-8595, b1*=32-4038, and b2*=O. Using these constants as starting

7- i
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values for the numerical method yields the desired coefficients in (9 b), or
a,= 6.378 070, al= 10.462 220, a2 = 1259 008, b, = 20.556 61, and b2 = 0.243 466.
The desired transfer fund ion is

T3(8) =_ 6378 070 + 20.556 61s+ 0.243 46682 (14)
6.378 070 + 10.462 2208 + 1.259 008824-- 8(

The Newton-Raphson method (IBM 1977) converges at the 9th iteration with
the error tolerance of 10-8. Equation (14) has the exact frequency-response
data specified in (8).

3.2. Initial guess by complen-curve fitting and continued fraction methods

The problem of finding unknown coefficients of a transfer function as a
ratio of two frequency-dependent polynomials has been investigated by Levy
(1959). His method minimizes the sum of squares of the errors at arbitrary
experimental points. We present a simple method to determine the approxi-
mate coefficients of a transfer function using the real parts and imaginary par-ts
of available limited frequency-response data. A low-order model is often
determined because of data limitation. The low-order model is then expanded
into a continued fraction of the Cauer second form to obtain a set of dominant
quotients. Then some non-dominant quotients are inserted into the continued
fraction to obtain an amplified-order model (Huang and Shieh 1976) which is
the desired approximate transfer function for the use of the initial guess.

Consider the transfer function

*(s)=b ° +b 1
8s +b 282 + . bmsm (15 a)

I +as+a.82 + ... an 8

where ai and bi are unknown coefficients to be determined. Substituting
s =jwk into (15 a) we have

(bo - b2a k + b 4 k
4

- b6eWk 6 + ... )

T*(j') = 4 + j (b 1 j, - b 3  
k b5-wk, - b7&tk7 + "'")

(1 - a2 k- .1 a4Wk4 - aetwko - ... )

+ j(alWk- a3wk3 + aVwk5
- a~wk7 + ... )

= R(k) + j l(Jk) = Rk + JIk (15 b)

when Rk and Ik are the given real and imaginary parts of the T*(s) at the
available frequencies Wk. Multiplying bolh sides of (15 b) by the common
denominator and separating the real and imaginary parts, and also equating the
respective real and imaginary parts, yiel1ds

bo - b 2Wk2 + b4 Wk4 - b6wJ o + ... + alfkwk + a 2Rkwk 2

-alkWk 3 -a4RkWk4+ .... Rk (15 )

and

blw)k - bswk a + brwk5 - b7wk7 + ... - alRkwk + a2lkwk2

+a 3 RkwOk-a 4 lkwl'+ ... Ik (15 d)
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In matrix form, (15 c) becomes

1 -W
2  

1
4  

-W
O
1

6  I 1w1  RI 1 1
2  -I 1 13u1 -Rl03,4 b0 " R "

1 - W 24 02 _6 1-2 CO2  R 2w2 
2  -1202 3  -R2W2 4 b2  R2

1 - 3  
4  

- .-0 36 03 R 3 -3 2 - I 3W3
3  -R 3w3 

4  b4 R3

= • (15 e)a,

a 2

1 - 0 2 &w4  - .X I.,C. ]?.&j. 2  - 1.(_ - R3aW. 4  a. a .

where x=n+m/2+ I if m is even and x=n+(m+ 1)/2 if m is odd.
Substituting ai obtained in (15 e) into (15 d), we have another matrix

equation to solve for bi, i = 1, 3, 5 ....EI -__ 13W3 
1

5  W 7  . . . b
W2 -w 033

3  W0 2
5  

- &27  
. . . b

W3 - W J - UW3 . . . b

((ao0 31w + aR 1w31
1 ) - (a2 Iw1

2 + a3R1wo1
3) + .. ) 1

((a1 2w'2 + a l R2w'l) - (aI202w
2 + a3R2 ow2

3)+ '..) (

L ((aoiVCOV + a1R.0w. 1) - (a2I 3 2 + a3 Rv 8 ) + J 15j)

where Wk=I, ao =1; k=m and y=(m+l)/2 if m=odd; k=m-1 and y=
m/2 if m = even. In this example, the availalole data are

w1 = COO = , R 1=T(jO)=1, 11=0

w0,-=-03.- 1"9, R 2=Re [ G(jo"j' -=2.9684,

I I +GGjjj,)JGF G(jf) _
12m 1Gw)J- -0.0252 (10)

O33=43¢--3"2, R3= Re L +0jw)]=0*,351,
L 1 +Gajw03o1

I=1 1 o J ,) - 104316
L'I + Gucw0 )

Since only three values are available, the approximate function T 2 *(s) is

T2*(8)= b°+ b8 (17 a),1+ a,8 + a 2

Substituting the data at w1t, and W2, and w 3 in (16) into (15 e) yields b0 = 1,
a,=00388, and a2 =0.1839. Then substituting aj and the data at 3 into

• 4
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(15 /) gives b1 = 28907. Because the desired approximate function in (12) is a
third-order function, T2 *(s) should be ami)lified by using the continued fraction
method (Huang and Shich 1976) as follows.

T2*(8) is first expanded into a continued fraction of the Cauer second form
to obtain a set of dominant quotients : h1 = 1, h2= -03507, 13= -09651, and
h4 = 16.0725. Then the order of T 2 *(s) is amplified to the third order by
inserting non-dominant quotients h, = 100 and h= 01, or

2 1 + 28907s I I
I + 0.0388s +0.183982 h + h88' Shj+ s-L  h+s

8 
8

h3+ -h+

h4-

h6 + -

54-3885 + 162.6914s + 15.821982=T._*(s).. 543885+7.5839s+ 10214682+S3 (17 b)

Huang and Shich (1976) have shown that the amplified-order model is a
good approximation of the original low-order model if the inserted positive
quotients hi>> I and hi, I where i is an odd number. Using the coefficients
in (17 b) as initial guesses we have the desired coefficients in (14) at the 15th
iteration (IBM 1977) with the error tolerance of 10 - 6.

If much experimental frequency-response data, including the dominant
data of a system, is available and the transfer function of the original system is
required, this is an identification problem. In this case, a set of non-linear
equations, based on the basic definitions of the dominant data, can be con-
structed and can be solved by the Newton-RapIhson method. The initial guess
can be determined by using the donlinant data and others in (15). Since many
data are available, a high-order approximate transfer function can be deter-
mined. Therefore, the use of the continued fraction method (Huang and
Shieh 1976) is not necessary.

When a high-order transfer function of a system is given and various
reduced-order transfer functions are required, this is a model reduction problem.
In the frequency domain, numerous methods (Chen and Shich 1969, Shich
and Goldman 1974, Hutton and Friedland 1975, Sharnash 1975, Lai and Van
Valkenburg 1976) have been proposed for model reduction. The continued
fraction methods (Chen and Shieh 1969, Shich and Goldman 1974), the Routh
a )proximation method (Hutton and Friedland 1975), the time-moment
matching method (Shamash 1975), and the frequency-moment matching
method (La! and Van Valkcnburg 1976) are the typical examples. These
methods have been critically com)ared by I)ecoster and Cauwenberghe (1976).
The new method presented in this paper can be used to obtain the reduced-
order models which have the exact dominant frequency-response data as those 4
of the orighia one. This method can be called a dominant frequency-response
data matching method. The procedure is as follows.

31 ,
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Step 1. Plot the frequency-response curves to determine the data at the
dominant frequencies wo, w, w, cel, wOc2, w ,, and oi,.

Step 2. Formulate a low-order model with unknown coefficients, and
write a set of non-linear equations based on the basic definitions of the data
at dominant frequencies.

Step 3. Determine a set of good starting values by using the synthesis
method or the complex curve fitting method, and solve the non-linear equation
by using the Newton-Raphson method. Thus, reduced-order models can be
determined. Comparing the reduced-order models obtained from the proposed
method with those of the existing methods (Chen and Shich 1969, Shieh and
Goldman 1974, Hutton and Friedman 1975, Shamash 1975, Lai and Van
Valkenburg 1976), we observe that the model obtained in this paper is superior
to existing methods in that the reduced model has the exact dominant frequency
response as the original. As a result, an engineer can design a control system
more efficiently in the frequency domain.

Since the original high-order transfer function is available, an existing
method (Chen and Shieh 1969) can be applied and modified to obtain an
approximate transfer function for the determination of the initial guess. Two
additional methods for initial guess determination are as follows.

(3) Initial guess by a continued fraction method (Chen and Shieh 1969).
Consider the high-order transfer function in (1 a). The function can be

expanded into a continued fraction and various reduced models obtained by
discarding some of the quotients, or

bo + b : + ... +bmS' n(s)
ao+a,8+ ... +a.sn=-s (18 a)

1

A+(18b) S

h2 +__

h2 (18c)s h~h2 +8h1 + -

1 h2h3h4 + (h02 + h4)8 (18 d)

- + hlh2h3h4 + (hlh2 + hh 4 + hh 4 )s + (

h2 + 8

h3 + s

Using the coefficients of the approximate model in (18) as the initial guess for
the numerical method, we have the desired reduced model. However, the

- aa. --- -- -- -
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approximate model in (18) may be unstable even if the original system is stable.
The continued fraction method (Chen and Shieh 1969) can be mo.-"fied by the
following new method.

(4) Initial guess by a mixed method of the continued fraction approach and
Gustafson's (1965) method.

Assume the reduced model of the original system in (18 a) is

TP,(8)=bo*+bi*s+ ... +b,_"*sv- n*(8)ao,+a, + ... +a, s a l (19a)

A matrix equation (Chen and Shieh 1970) can be constructed from the dominant
quotients hi, i = 1, 2, ... , p, obtained in (18 b) and the unknown coefficients aj*
and bi* in (19 a) as

[b] = [H][a] (19 b)

where

[a] T = [ao*, a,* .... -,* (19 0)

[b] 'r = [bo* , bl*.. , bP_* ]  (19 d)

[H) = [H2]-'[Hl] (19 e)

where T designates transpose,

A,0 0 00 1r 100. 0 0100 00
I h2 0 0 0 0 h 0 0 0 0 1 0 0 0
] 0 1 h3 0 0 0 1 h2  0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

. . . . . . . . . . . -. . . . . .

0 0 0 1 h 0 0 0 1 -_ 1  0 0. 0 h

10 0 010 1 0. 00 0.0 o0
[ h2 0 0 0 0 1 0 0 0 0 1 0 0 0

[Hl] =  0 1 h3  0 0 0 0 h2  0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0P J 0-h 0 0 0 .1 hp-_J 0 0 0 .0 h2

The ai* in (19 c) can be determined from the coefficients of the polynomial that
is obtained from the product of the dominant eigenvalues of the d(8) in (18 a).
When the dominant poles of d(8) cannot be clearly identified or the poles of
d(8) are not available, the paper and pencil method suggested by Gustafson
(1965) can be applied to construct the d*(s) or to determine ai* in (19 C). Then,
substituting the ai* into (19 b) yields the required n*(s) or b1 * in (19 a). The
steps determine the d*(8) are shown as follows.

.P



Method for modelling transfer functions 1109

Step 1. Construct a Routh (1877) array using the coefficients ai of d(s)
and the Routh algorithm. The aj are expressed by double-subscripted notation
aj,1 for obtaining the general algorithm. The Routh array is

,l A a, a12 A an_2  a13 A-an_ 4 ... aoaa,a11 /

1 a21
a a 2 

4 -an-l a 22 A-a.- 3  a 23 A-an 5a21 /

Y a3 ,
,3 1 Aa 1 2 -- ya 2 2 a 3 2 ---a, 3 - yla 2 3 a,, ...

a3 1

a4 ,1
a 41 -a 22 - 2a32 a 42 a- Y2a33

(20 a)

a ,1  an- a-2,2

__an-1, I ......................................................

an-, I an-l, 2 = ao

" -= a . ,n .
nan,1

a,+,,1 =a0 j

In general a ,j=aj_2,+i-yj_2a_,j+; = 1, 2,..., j3, 4,...

yj = aj, I[ai+, 1 (20 b)

Step 2. Construct various approximate low-order polynomials dj*(s) from
the last row and the next to last row, and so on in the Routh array.

For example, the ith order approximate equations are

d,*(s) =a, ,s +a.+1, 1=am, s+ao=O when i= 1 (20 c)

d2*(s)=a,,l2 +anls+an1 ,2 =an1 ,182 +an,18+ao=O when i=2 (20d)

and

d3*(s) = a.-2,,s+ a.-,,,82+ a%-2,28+ an.-.,

=a ,,1
3 +a,,,s 2+a-2,,+a,=O when i=3 (20e)

Since the original system is asymptotically stable, all yj are positive values.
The approximate polynomials dj*(s) are always the Hurwitz polynomials.
Moreover, Gustafson (1965) has shown that relationships exist between the
coefficients of di*(s) and the time-domain moments. The normalized poly-
nomials can be determined by dividing each coefficient in dj*(s) by the coeffi-
cient of the highest order term in 8. The approximate transfer function TP*(s)

?4
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in (19 a) can be considered as a reduced-order model of the original high-order
system. In this paper, we use it as the initial guess for the numerical method
for determining the reduced older model that has the exact dominant frequency-
response data as the original system.

4. An illustrative example
Consider the unit ratio feedback closed-loop transfer function of a stabilized

real missile system (Bosley 1977)

T(8) k(b ' +b 8 + ... +b' 6 s
5 ) (21 a)

where ao + as + ... + allsu  i

where

ao = 8.802 158 509 x 1018a, a 2-419 047 424 x 1019
a2 = 2.911 920 56 x 1018, a.= 2-420 405 431 x 1018

a4= 6-667 397 031 x 1016, a.= 9.749 923 212 x 1014

a. = 9-360 329 977 x 1012. a 7 = 6-231 675 318 x 1010

a.= 2-976 950 696x 108, a.--9,316 239 04 x 105

a,,= 1923 554 x 103,  a,, 1

and

k'= 1.494 523 312 x 1011

b'o = 5 8 8 9 609 375 x 107, b' 1 = 3.084 598 703 x 108

b' 2 = 1.958 045 299 x 107, b'2 = 3.357 065 095 x 105
b4 -  I 1  1 t 3 3 X i 0

,  b'S=lI

The second order and the third order reduced-order models which have some
of the dominant frequency-response data of the original system are required.
The open-loop transfer function G(8) of the system is

G(S) = k(eo + e18+ + +e586) (21 b)

8(9 0 +g 18 + ... +g 10
)10

where

go=- 2-190 952 724 6 x 10 19, f 1 = -1442 378 55 x 1016

92= 2 ,3 7 0 233 311 x 1018, g3 - 6.641 763 067 x 1018
9 4 = 9-748 428 689 x 1014, g5 = 9.360 329 977 x 1012

go= 6-231 675 318 x 1010, g7 = 2.976 950 696 x 108
98 = 9.316 239 04 x 105, g9 = 1.923 554 x 103

0= 1

and

k= 1-494 523 312 x 101 1

e0 =5.889 609 375x 107, el = 3.084 598 703 x 108
e2 = 1.958 045 299 x 107, e3 = 3.357 065 095 x 105

e4 = 1715 193 3 x103 , e6= 1

- 4m -
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Note that G(s) is a non-minimum phase function ; its Nyquist plot is shown in
Fig. 1. The dominant frequency-response data are chosen and given in (8).
The set of non-linear equations are shown im (11). The initial guesses shown
in (13 h) and (17 b) yields the required third-order reduced model in (14), or

0.243 46682+20.556 61s+6.378 07T3s =*+ 1259 008s 2 + I0462 22. + 6378 07 a)

If the continued fraction method (Chen and Shich 1969) in (18) is used, the
approximate reduced model is

0.692082 + 19.4692s + 3.7376
'*(s) 3s3 + 0.9488s 2 + 10'1661s + 3"7376 (22 b)

Using the coefficients in (22 b) as starting values for solving the non-linear
equations in (11) yields the desired coefficients in (22 a) at the eighth iteration
(IBM 1977) with the error tolerance of 10- . If the mixed method in (19)
and (20) is used, the normalized approximate denominator in (20 e) is

d3 *(S) = s3 + 0.952482 + 10.1924s + 3.7455 (2. c)

The n%*(s) obtained from (19) is

na *(s) - 0.70665s2 + 19.5155s + 3.7455 (22 d)

The approximate transfer function by the mixed method is

0.706682 + 19.5155s + 3.7455

8 3+ .95242+ 101924s+3.7455 (22 e)

If the coefficients in (22 e) are used as starting values, the Newton-Raphson
method (IBM 1977) will converge to the desired solution in (22 a) at the eighth
iteration with the error tolerance of 10-. The unit step response curves of
various reduced models and the original system are compared in Fig. 2. All
three reduced-order models give very satisfactory approximate time response
curves. However, only the T3 *(.s) in (22 a), which uses the method of dominant
frequency-response data matching, has the exact dominant frequency-response
data as the original system.

If w,= 3.2 rad/s, #m=5"7' and Re IG(jO)= -2"1 are chosen as the domi-
nant data, the second-order reduced model obtained by the proposed method is

3'339 5178 + 9"224 24

8 =2 + 0.302 806s + 9.224 24 (23 a)

The approximate reduced models by the continued fraction method and the
mixed method are :

24"79818 + 4"8122
T~ '*(s) 1s2 + 12-8201s+ 4"8122 (231b

and

2*(8) 16.3618s + 3.9328 (23 c)
82+ 6.57268 + 39328 (

• J.---i - ---
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OUTPUTi

ORIGINAL IITH ORDER SYSTEM: T(s)3.0- o_-- THIRD ORDER REDUCED MODELS BY THE CONTINUED FRACTION METHODAND THE HMIED METHOD: T
3c(s) "ad T3(s) CII-- THIRD ORDER REDUCED MODEL BY THE PROPOSED METHOD T3

T3 (s)

2.0 . % z  T (S)

0

:J ---v------.-
81 10ji (SEC) -t

00 2 4 68O

Figure 2. Time responses or original and third.order reduced models.

The unit-step time response curves of various reduced-order models T3*(8),T2*(s), T2c*(s), and T m*(S) are compared in Fig. 3. It is observed that T2*(8)gives better approximation in the transient response than T2 *(8) and Ter*(8).

3.0 
T
3 (s): - THIRD ORDER REDUCED MODEL By THE PROPOSED METHOD

,*) T2;(s):O-" SECOND ORDER REDUCED MODEL By THE CONTINUED FRACTION METHODT3 (s)

2*(s) T
2

e
(s)

') '
- -6 SECOND ORDER REDUCER MODEL 8Y THE PROPOSED METHOD

*T2 (s): -- 0 SECOND ORDER REDUCED MODEL By THE MIXED METHOD

2.0 - 1:27

0

-0,25 - --- I
0 2 4 6 H 10 1,2 1'4 16 R (EC

r 3IFigure 3. Time responses of third- and second-order reduced models.
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5. Conclusion
A basic method has been developed for modelling transfer function using

dlominant frequency-response (data. When the specifications of the design
goals of a control system are assigned. the prop)osed1 method gives the standard
transfer function. TPhus, the design processes in the frequency domain can be
significantly simplified. When the experimental frecluency-response data of a
s 'ystemi arc av-ailable, the propose(] method can be used to identify the transfer
function of the original system. Also, if a high-order transfer function is
given, various low-order models can be determined. Tlhe reduced models have
the satme dominant characteri~stics of the original system. Four methods have
been proposed for estimating the good starting values for the solution of non-
linear equations. Tlhe nev, dominant frequency-response data matching
method, and the new mixed method that has the advantages of both continued
fraction method of Chen and Shich (1969) and the paper and pencil method of
Gustafson (1965) have been developed for model reduction.
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Analysis and synthesis of matrix transfer functions
using the new block-state equations in

block-tridiagonal forms
L.S. Shish, Ph.D., and A. Tajvari

Indexing terms: linear network analysis, Linear systems, Matrix algebra, Polynomials, Stability criteria,
Transfer functions

Abstract- A new block-Routh array with block-Routh algorithm is developed to extt"-t the greatest common
matrix polynomial of two matrix polynomials that are not coprime, and to construct a block-transformation
matrix that transformas a block-state equation from a block-companion form to a block-tridiagonal form. The
newly developed block-state equation In the block-tridlagonal form is a minimal realisation of a matrix-
transfer function. Also, the -block-state equation is used to syntheaize a driving-point impedance matrix. A
stability criterion is then derived to teat the stability of a class of matrix transfer functions.

I Introduction where
The accurate description of linear, time-invariant circuits
and systems in the time domain may result in m n th-degree 0m Im 0m 0.O
coupled differential equations, or an nth-degree matrix A, Om1 ' 1 0 mIdifferential equation with m x m matrix coeffcits As--------------------

Z AiDI'1 x(t). rQt) (1a)-A -A

Y (t) E BD'-'xo(t) (lb) 0n,,,

.and J. B= Om X X21
Dil'xo(O) = fail i 1, 2,.. n' 00c LIJ LX

where 19(o) aA(@) we tks 6lase~ ipmsfemo of. ) 
vesi, id xO(t) is an m x I state vector. A, and B, are C = [8I B2 83 .. . Bn]
m x m matrix coefficients and the differential operator The block elements A j, 0 ,, 'In', B and 0,.., are m x m
D = d/dt. When each initial vector [all is an m x I null constant matrices, m x m null matrix, m x m identity
vector, Om x1, the corresponding frequency domain repre- matrix, m x m constant matrices and nm x 1 null vector,
sentation of the same system is an nth-degree matrix respectively. The state vector x consists of n block vectors
transfer function written as (xi, i = 1, 2,. . ., n). Each m xlI block vector xi consists of

Y(S) =TOSRs) (2a) m state variables. The state vector x is defined as a block
vector, and its co-ordinates as block co-ordinates. As a

where Y(s) and R (s) are the Laplace transforms of y(t) and result, the state equation in eqn. 3 is defined as a block-
r(t), respectively. The matrix transfer function T(s) is state equation in the phase-variable block co-ordinates.

Without considering the special structure (the block-
T(S) =D 2 (r) 1(s)-, (2b) companion form) of the state equation in eqn. 3, the same

where vector x can be observed as a vector with nm state variables
in general co-ordinates. When a dynamic systeiz is feitn-

D1 (s) = A. 10 + A,,s" + . +.A2t' -I- lted in a rMtrix differential equation -or 2 matrix transfer
and function, it is more natural and convenient to analyse and

synthesise such a system using the block state formulations
D2(s) = Bs*-1 +B,-sIM2 + - . - + 2$ + BI In block co-ordinates than in general co-ordinates. In this-I paper, all derivations are based on the block state-space

When the matrix polynomials D1 (s) and D2(s) are right formulations in various block co-ordinates.
coprimel and A,,+1 -Jm, the corresponding first-degree The objectives of this paper are described as follows:
state equation in the controllable block phuse-varlable (i) Construct new block-Routh array and block-Routh
form 2 (or in the controllable block companion form) is algorithm for extracting the greatest common matrix poly-

x = x + r . 3.) nomial of two matrix polynomials that are not coprime,
and for establishing a new block-state equation in a block-

* Cx x(O) 0,,,, I, (3b) tridiagonal form, using a simple linear-block transformation.
_______________________________________ (ii) Apply the obtained block-state equations for finding

the minimal reafisations of a matrix-transfer function, for
Paper 507D, received 4th September end in ms d forva 3rd synthesising the driving-point Impedance matrix, and for
December 1979 determining the %!2bi~ity of a class of matrix-transfer
Prof. Shiels and Mr. Talvari are with the Department of Electrical
Enlinerns, University of Houston, Houston, Texas 77004, USA functions. i
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2 Construction of a now block-tridiagonal matrix When D2(s) and D,(s) are right coprime and D, =A, I

Jury,3 Anderson,4 Barnett s and Takahashi 6 have shown In, the block-state equation in eqn. 3 can be transformed
that a state equation in the phase-variable form can be into a block-tridiagonal fo;.n using the following new block
transformed into a scalar-tridiagonal form with complex transformation:
elements by extending the ideas of Chen and Chu,' Barnett
and Storey,' Loo 9 and Power." However, their methods X = T Z (6)
deal only with single-input, single-output systems, and
involve complex numbers. For multivariable systems, Shieh where
et aL2, 11 have developed linear block transformations
that transform the block-state equations from the block-
companion forms into the block-Schwarz forms, which are
the special block-tridiagonal forms. However, their methodsDOm On Om Om Om
are restricted to a characteristic matrix polynomial and not D2n-2. 2  2n2,1I Om om 0 m 0 m
to the matrix transfer function. A new block-Routh array -
with block-Routh algorithm is developed to construct a Ds, n-3 Ds, n-4 Ds, Om Om Om
simple linear-block transformation that transforms a block- T( )
state equation from the block-companion form to a block- I4,n2 D6,r-3 D62 -I--- -1 

0 m4
4 tridiagonal form. The construction of the block trans- D4,n-1 D4,,- 043 1 D42  1041 Om

formation involves the real matrix coefficients in both [ D ---

numerator and denominator matrix polynomials of a D2., D2,,- D ! D ID, i D21
matrix transfer function.

In order to derive the recurrence algorithms, the block
elements A1 and B, in eqn. 2 are expressed by the double The new block-state equation in the block-tridiagonal
subscripted block elements DI, j and D2, j, respectively, as form is

i = T1AT 1 z+TIBr = Gz+EIr (80)
DjI = An++2 - j = 1,2,... ,n+1 (4a) y = C7'"z = F,: (8b)j
D0,J = Bn -!  I = 1,2,.- ,n (4b) where the system matrix G,(=TIAT ') is the block-"". tridiagonal matrix and is written asI

-- (H 2nK 2 ,) OMt. On OM OM,

(H2 -2K 2 .- )- ' -(M2 .-2 K2.. 3) I OM O, On, O,
0- - - - 0 -(H8K7) "I ' l  0M 0M
OMj OMo ,HJ)O

I I - K-
OM 0. O I, (H4K3)-' -(H 4 3) "

o, o o,, 0,,, 1 (bXi)-, I -(H 2Ky)-

'I
Rewriting eqn. 2 yields El= (TI)

T(s) =D 2(s)D(s)'-  = [Onm O...-ON Om On, (K, )'] (8d)

F, - c7c,
I,,,, t +Rt S +.+i'I]= [On 0M ---- On on OM IMI (8e)

X (A,,Sx +As n "' + +All-' The 'in eqn. 8d designates transpose. The block elements

Dgj in eqn. 7 and Kj and HM in eqn. 8 can be obtained from

[D 21S'-1  - +D2.j the following new block-Routh array with block-Routh+ [D2S" algorithm which is different from the .matrix-Routh array
with matrix-Routh algorithm developed by Shieh and

x[Dttt"+Dt.2 "' +... +D,] "  (5) Gaudiano.',
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The block-Routh array is

, D,,D=,' An., D, 2 = D13= A.i,.D = A,
K, = j 2'

- 2, =2 = = it, D23 ..

X1 = D21D;,, Dl A D12-KID2: D3 4 D13 KiD 23 Dj.
D41 4= D22 -H11D32 D42 9= D23-H2 D3 D4j

H14 D4 ODS ,

Ks = DV4t0;' Ds, 4 D2 -KD4 DS = D23 -KD, S3  .. (
DGI =4 D42 - ff4Ds3 D62 4= D43 - H4Du D63 ...

D DDn -,n i.

\ = D2n*II # Dnjl

The general block-Routh algorithm is follows: first, each block element in the second row is
(i) premultiplied by K1 . Then, subtract each resulting block

fronm each block elemient in the first row. Finally, shift
K = DtiD2? rank D21 = m each block element so obtained one column left and drop

3. = D l -KID 2  / 1, 2,.* n,~ the zero.first block element to form the third row.
The second and the obtained third rows are then used as

H2 = D2 1D-l rank D31 = m starting rows to generate the new matrix H2 and the block
elements in the fourth row. The second and the obtained

SD4,j =  D 1,+ L-H I ] = 1,2,.. . ,n - 1 fourth rows are used to generate the new matrix K3 and the

(9b) fifth row. Also, the fourth row and the obtained fifth row
(it) are used to generate the new matrix H4 and the sixth row.

Repeating the processes of determining K3 and 14 and
K1. 1 = DLiDj.12,1  the corresponding rows to the 2n + I sow yields the

complete array. It is noticed that the array exists if rank
¢ankD5 D2,1 = m D, =m for i = 1,2,..., and also that the block-Routh

I = D, 1  array with the block-Routh algorithm is different from the
matrix.Routh array with the matrix-Routh algorithm devel-

= 2,3,... oped for matrix-continued fraction expansion.12

H-j When any matrices D1, I are singular, the block-Routh
H12 = D+2, 1 Di+3, Iarray become a numerically ill-conditioned case. The

ranD+3,1 = m = 2,4,6,..., 2n -2 original T(s) will be modified according to applications in
such a way that the block-Routh algorithm can still be

DI+4,j = DI+2,J+l applied. Various remedial methods will be suggested in the
latter Sections.

Since the block algorithm in eqn. 9 shows the com-
D2P+2,/= m binations of a repeated process and an alternately repeated

(9c) process of the long divisions of two mnrix polynomials,
the algorithm can be expressed by the recLtr u process as

(I)

Tk.e construction of the block-Routh array in eqn. 9 can T(s) D D1 (s)DI (s)
be described as follows: arrange the matrix coefficients of
the given matrix polynomial D, (s) in eqn. 2 in the first row K, D1 (s)[sD2 (s)] - l as s -+ o

of eqn. 9 and the D2(s) in the second row. A new matrix Ds(s) Dj(s)-sKID2(s)
K, is obtained by the matrix multiplication D11 D;il where
D11 and D21 are the block elements in the first column of H2 = D2(s)D3(s)' as a -- ooi
the array.

The block elements in the third row are generated from 04() 0D(s) -H 2 D,(s)
the K, and the block elements in the first two rows as (lOa)

MEE PROC., Vol. 127. Pt. D, No, i, JANUARY) 950 21



(ii) (iii)

Kg., = D(s)[sDI 2(s) "  as 3-- D1*(s) = sKD2(s)+D3'(s) (I1c)

DI- 3 (s) = D(s) - sKI D. 2(s) The desired D2(s) and D, (s) in eqn. 2 become

H112 = Dg,2()D, 3(s)' as S-~
D 2(sD (s) K21 -1 112, (1ld)

OA 4(s) = Di. 2(s)-H 1. 2D1 , 3 (s) D

o),)= Dr(s) [F x.,.) H2 j (lie)

i = 2, 4, 6,..., 2n - 2 (lob) d =-I

The matrices K, and Hi are called the block quotients, and
are different from the matrix quotients' 2 obtained from the T(s) = D*(s)DT(r)-' = D2(s)Dj(s)-' 0 if)

matrix-Routh algorithm except for the first two block The inverse block-Routh algorithm of eqn. 9 is
quotients.

Eqns. 10a and b can be combined and simplified as (i)

D (s)Dj 2 (s) "' = Q1,1(s) D2 2,j = Oa, 1,2,..

D2,,,1, D k" D1.'1 ,,.m = 2,3,...

- Hl ' 2 SKI. I) I i = 0,2,4,..., 2n-2 (11Ig)
Qi ,(s) = Hg;'2 + sX 1,+ (ii)

Do(s) A D1(s) DO.,, = Hg.2DA 3.1

DU 2,,(s) 4- OM (10c) Di* 2,1  ,, . J + H+2-1*- 3,J I

Successively substituting eqn. lOc into T(s) in eqn. lOa D = 12.1
yields 

j D.+ KD ?

-TI A1,j : =Di*+s,j + Kj |DA 2,1+
T(s) = D2 (s)D(s)- ' = [D)s)D2(s) D,,j,]" H 1 fD 1  D

= [Qs) -H'D 4 (s)D(r)'P'
i = 1,2,3.... i = 2n-2,2n -4,..., 2

= IQ(S) -HI2 - ' Q(s) -H;' tD6(s)D(s)-]-]" (iii)

D7,1 = KID2*

= Q,(s)-Hi' [Q3(s)- ' [Qs(S) Dj*, = D3.j +KD2.,

~He'!. . -Hid!Q2 ~-,()E'J'f''E' D. 1 = D* ,(A K 2 1 ) ' I= ,,,.
where (lOd) 1-i K21 -. \1 1Han' J l3

Q,4 I(s) =si.I + i = 0,2,4,... 2n -2 D2  . K1-1)l 'a

Eqn. 10d is a Stieltjes-type2 matrix continued fraction. From eqns. 9 and I I we observe that the block-Routh

The counterpart of the scalar canonical form of eqn. lOd algorithm involves only real matrices generated from the

has been developed by Field and Owens. 29  matrix coefficients in the numerator and denominator

When the block quotients K, and Hi are given and the matrix polynomials of a matrix transfer function. Also we

oiginal matrix polynomials ate required, this is an inverse notice that only one block transformation is required to

problem. The reverse recursive relations in.eqn. 10 can be ..sansfom-a block.state.-quation in eqn. 3 to a block-

applied .to-determine the original n atrix polynomial -and .... tridiagonal matrix form in qn. 8. We believe lftt the

listed as proposed block-state equation in eqn. 8 and the block
transformation in eqn. 7 are new.

(1) 3 Minimal reabsations of matrix transfer functions
Dn,,2 (s) = 0M  and Dn I (s) = Ir (l 1a) In the analysis and synthesis of the matrix transfer function

(ii) .of a multivariable system, the primary concerns are the
D ,2(s) = Ht 2D, 3 (s) + D 4 (s) internal structure and stability of the system. When D2 (s)

and D1 (s) in T(s)= D2(s)D,(s)-' are coprime, the realis-

Dt(s) = sKgDt, 2 (s)+Di*3 (s) atlon of the T(s) is minimal and tle stability of the system
can be determined from the scalar chiracteristic polynomial,

D, (s) = H I D*(s)- DX 2+(s)] det [D(s)]. The minimal realisation is significant because

i = 2n - 2, 2n - 4,..., 2 the minimum number of integrator. can set up an analogue
or digital simulation of a matrix transfer function, and also

(I lb) more information about the internal structure of the
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system can be obtained than from the original formulation. may be ill conditioned matrices even if q is an integer. If
In the frequency domain, a matrix transfer function has this is the case, the T(s) is decomposed into two parallel
been realised using various Cauer fonr. of matrix continued subsystems T7(s) and T2(s) by using partial-fraction
fractions. 2" 14 When the nth- and the (n- l)th.-dgree expansion. The rank of T,(s) is chosen as m(q -I), and
matrix polynomials, D, (s) and D2 (s), are arranged into the that of T2(s) as Im, where ' is a proper integer. The pro-
first two rows of the block-Routh array as shown In eqn. 9, posed method can be applied to determine the minimal
th," majix-Routh algorith n' has been applied to determine realisation of each T1(s) and T2(s). Se= te :z:3o
2n m x m matrix quotients H*. It has been shown" that i.... . . . ... .. a 0!1611 are.......... i '-ne
the state space equation with nm x nm system matrix, .... "t mph . . (. ) - N.-q mid reih h, (0) _.I ... , (0)
which is constructed using 2n matrix quotients Hj, is a "h 0 ...... ObbO0 . .... S 111 ....... .. ....
minimal realisation of the T(s) in the first Caucr matrix IIW.XO)
form. As a result, the D2(s) and D, (s) are right coprime. When the ratio k/m is not an integer, or k = mq 4- r,
Using the same block elements in the first two rows and the two parallel subsystems T, (s) and T2 (s) shall be chosen
applying the proposed block-Routh algorithm in eqn. 9 such that rank T, (s) = mq and rank T 2 (s) = r. Thus T, (i)
results in the same number (2n) of block quotients K, and can be realised by the proposed metnod and T2(s) can be
H1. Therefore, the block--tate equation constructed using realised b using any other methods,15 such as the Gilbert's
the same number (2n) of block quotients with dimensions method. The .omposite state equation of the two parallel
m x m is a minimal realisation of the same T(s). As a result, subsystems is the minimal realisation of the T(s).
the block-state equation in eqn. 8 is completely controllable In order to obtain the minimal realisation of a general
and observable, and the D2 (s) and D, (s) are right coprime. matfix transfer function T(s) that contains not coprime
It is noticed that only K, = H', H 2 = H2 and other matrix polynomials, we consider T(s) as
quotients are different. T(s) = D2(s)D1(s)-

An alternative way to show that the block-state equation
in eqn. 8 is a minimal realisAtion of T(s) can be described as = [D21sn - ' + D22 sn 2 +. 2. + ,n]
follows: writing the controllability matrix (T) and the
observability matrix (T0)2" in Kalman form result in x [Di1s" + D12s'- +... + D, . ]"-

e= [Ej, G1 ,1 , Gi E, ..... j = P2(s)C(s)[1P,(s)C(S)-

0. . ... = 0. 21s'- +.. 2.s-2+. . . +... Pi,

o,0  (KK 3)-' X X [P1 Sx 1 xP1 f s+ sr-, + - +P, 1 ' (I 2a)

L": x ... x where

and C(s) = C.,_,sn-r + CnrSh-r-i +...+C, (12b)

To = [F', (FIG,)', (FIG")', ..., (FIG':)'] C(s) is a common matrix polynomial, and D2(s) and D, (s)are not coprime. The realisation of T(s) using D2(s) and

0 0 . ((H2.K2..-. H 2K,)')-1 D,(s) is not minimal, and the stability cannot be determined
""1 from the scalar polynomial det (D,(s)] or det [SI-A] in

. eqn. 3.
Om ((H2Kj)')- ... X The C(s) can be extracted from the block-Routh array in

- X X eqn. 9 as follows: when n = r, in eqn. 12, the block-Routh
d earray in eqn. 9 terminates normally, and C(s) = In,. When

n > r, the array will terminate prematurely. The C(s) can
where the xs denote unspecified blocks. be obtained from the last nonvanishing row in eqn, 9. For

Both matrices 7, and To are block triangular matrices, example, if D21, I = 0,, then C(s) = D n.1,,s + D2, 1, 1.
From the cross-diagonal block elemrnts in T,, we find This can be verified from the following: when 2Y block
that if rank K = m, then rank T. = nm and the system is quotients K, and Hj are available, the matrix coefficients
completely ,ontrollable. Also, from To-we.'fmd.tat Ifrank P,1 and P, 1 n'eqn.,124canba.detezmined from the.reverse
K,=m andu. rank N, -m; then -rank To =,rmn and the processofthealgorithmin eqn. 1l,or
system is completely observable. Thus, we can conclude
that the system described in eqn. 8 is completely con- (i)
trollable and observable and it is a minimal realisatlon of P2r+2 (s) = Om,P.-(s) - IM (13a)
T(s) with minimal dimension nm if rank K, = m and rank
Hi = m.

From the above conclusion we are now able to deter- P,+2 (s) = HI, 2PI+3(s)+P,+4 (s)
mine the condition that the block-Routh array exists. The
necessary (but insufficient) condition for the existence of P,(a) =K, ,P,(s) +P, s(s)
the block-Routh airay is that the q(= k/m) has to be an P+I(s) = HC"I [P(s) -Pi. 2(s)]
integer, where k is the rank of T(s), (which can be deter-
mined from the Hankel matrix"5 or from the Gilbert's i = 2r-2,2r-4, ... ,2 (13b)
theorem,5 ' and m is the input-output number. The suf- 011)
ficient conditicn is not added into the necessary condition
because, for a rare case, some D,.1 in the block-Routh array Pi (s) = sKP 2(s) + P;(s) (13 c)

1EE PROC., Vol. 127, At D, No. 1, JANUARY 1980 23
- -- --- --- ~ --- -.-- ---- - __ _"_



If the array terminates prematurely, the D2 (s) and D1(s) via state-space approaches has been successfu'ly developed
can be obtained in the same fashion as by Anderson and Vongpanitlerd.'5 Multiwinding trans-

(I) formers are mainly utilised for the realisations. Recently,
Takahashi et a. 6 have proposed an elegant method for

020) = 0., Dr.1(S) = IMC(s) (14a) transfer-function realisations without using integrators.

DO However, they deal with only one-port networks. In this
" paper, their method will be extended to realise the Z(s)

D1+2(s) = H 1+2Df+ 3 (s) + Dg+4 (s) using the newly developed block-state equation in the

block-tridiagonal form.
" D,(t) a 1K-DI,2() + DI,,(s) The Z(s) of interest in this section is an RC driving-point

DI(S) H' [Dg) D12(S)) I impedance matrix. The multi-port RC ladder network
obtained from the Z(s) will be used as the plant in

i 2r - 2, 2r -4, .... , 2 (14b) synthesising the general matrix transfer function. The

(iii) block-state equation of a multi-port RC ladder network

=in Fig. 2 isDs)=sK 1D2(s)+ D3(s) (14c) = Gov + Eoi (16a)

Substituting eqn. 13 into eqn. 14 yields =G + (16a)

D2y+(S) P2?+ 1(s)C(s) = Fo (Ib)

and where
and

D(s) = Pi(s)C(s), i - 2r-2,2r-4,. .. ,2 C-"-- 2Ri. C-12 C 1 12R-1 C1 /2

(15b)
Finally, we have C 1/ 2R - 1 -C 2  C 12 (R-I + R -) 1  12

D 2 (s) = P 2 (s) C() (15c) 
-o -0- -C-

0
---¢ --

D1(s) = P(s)C(s) (I5d)

Therefore C(S) is the common matrix polynomial of D2 (s) 0m 0.

and D, (s) which can be determined from the nonvanishing 0m OM
row in the block-Routh array. The P2 (s) and P1 (s) are right
coprime and the realisation of T(s) using P2(s) and P1 (s)
is minimal. Thus, C(s) is the greatest common matrix 0M
polynomlnal.2, 31 The corresponding block diagram of the
minimal realisation of the T(s) in eqn. 3 is shown in Fig. 1. Ct/1 2R- 1 C 1 2

An alternative method, which uses the matrix-Routh

array but not the block-Routh array, has been proposed by -C;11
2 (R- 1 + R' )C;V2

Shieh, et a/. to extract the common matrix polynominal
of the two matrix polynominals that are not coprime.

Om 0

Om Om.

Om 0,

C-l;Dl 1 12
H;"R; *6- 1

2 0-O

Fig. 1 Block dun-am repreaenaaon of the block-state equation

In0 eq. M

4F BoStatekPace ralisatton of driving-point impedance C; =  + , + = 1/2j

E 0- 0m , V=

When the input vector R (s) and the output vector Y(s) in Om r t .
eqn. 2 are observed as the input-current vector and the 0.lCf- 1 5n-1

output-voltage vector at the same port, the matrix transfer Ol 1/2V
function T(S) becomes the driving-point impedance matrix . .. .

Z(:). The realisation of this positive real impedance matrix Fo = [C "2  O 0 Om 0m 0m
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Note that A, and C are real, symmetric and positive- The recursive relations of the block elements L1, Mi. N1, K,
definite matrices, so that and H are as follows:

C' itTA'ICl 2 = (Cj! 2ATI'Cj"2 )' L = any nonsingular matrix

" ,2 R 1 4.'I 2  (174) Mi = L(H 21K 21 .)'L I 1,2,...n
CfV/2 RiCf1/2 = (Cf jCj' 1/2)# (17b) NL

and I'= l,2....n-1

C-Vt(At t + Jt-1)C1"
2  L 1 1 = NILIK 2 , 1  1 = 1,2, ... n- (20)

lCj=-s(Ri' + JL'2I ) C" 1], (1 7c) The square root of a matrix can be' determined using the

In other words, the system matrix Go is a symmetric matrix, method suggested by Frame.1
6 Comparing the respective

In order tod, mth teblock lmet s of thetbloc-sate. E2 and F2 in eqn. 19 with Eo and F0 in eqn. 16 yields
In order to match the block elements of the block-state Ll - Ki' 2 = C?'w . When the block elements K, N, and
equations in eqns. 8 and 16, we perform the following Mt are real, symmetric and positive definite, we can solve
block transformation on the block-state equation in eqn. 8: the R, and C, by matching the block elements in the system

z T'q (18) matrix Go in eqn. 16 and that of G2 in eqn. 19 startingfrom the block elements MI, N1, M2 and N2 ..
where The KI (= C1 ) is chosen as a real, symmetric and positive-

definite matrix in order that the synthesis of this capacitor
0m 0 m o0m L LI matrix C can be performed by using multiwinding trans-

I formers. Also, the block elements N and Mi are restricted0 n Om I L2  
0 m as real, symmetric and positive-definite matrices so that G2

T2 = " in eqn. 19 has real eigenvalues, owing to the symmetric
On LN-1 O property of this matrix. In the following Section, it will be

further shown that the system in eqn. 19 is asymptotically
L 0 m On OMs stable. As a result, the real eigenvalues of G2 are negative

real.

The new block-state equation becomes Thus the RC driving-point impedance matrix can be
synthesized using multiport RC network. It is noticed that

4 = T2G tq + T2 Etr = G2q + E2r (19a) the passive RC structures are different from that of Cauer's

y F1Tjq = Ftq (19b) first form. Thus, extending the ideas of Takahashi et aL
and the newly developed block-tridiagonal form, a matrix

where transfer function may be synthesised via block.state space
approaches without using integrators.

N__ 0 , O On On When the block-Routh array of an RC driving-point
impedance matrix Z(s) becomes an Il conditioned case,

N, -M I N2  0m • On 0m the proposed remedial methods in Section 3 can be applied
to overcome the difficulty. The synthesised multiport RC

G2 = N2 3M N3 . m networks of the decomposed subsystems ZI(s) and Z2 (s) are
connected in cascade" because the Z(s)(=Z (s) + Z2(s))

0 m 0 m o 0 m -M,-, Nn-. is a driving-point impedance matrix rather than a transfer.
function matrix.0m 0 m On On NO-, -M When the driving-point impedance function of a one-port

Lnetwork is of interest, the linear transformation T2 in

LIKI eqn. 18, and the ;ystem matrix G2 in eqn. 19, can be
expressed in terms of scalar quotients k, and hi (instead of

On K, and H,) obtained from the modified Routh array and
Routh algorithm in eqn. 9. The linear transformation

= n matrix T is

o 0 0
0n

Pi6.2 IMultport RC ldder network /h . .
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the characteristic matrix polynomial. Papaconstantinou28
0 0 Veho suggested a recursive algorithm for indirectly determining

the stability of a matrix polynomial. Anderson and
V 3Bitmead' 9 determine the stability of a matrix polynomial

0 0 kby testing the lossless positive real of a rational transfer
function matrix which is derived from D, (s). Denman o has

kalso suggested a numerical method to determine block roots
k* i 0 0 (21) of a matrix polynomial which can be used to determine thestability of i, matrix polynomial. Recently, Shieh eta12 "

have partially extended the scalar Routh criterion to the

0 0 0 matrix Routh criterion for testing the stability. All above
methods have assumed that D1 (s) is the characteristic
matrix polynomial. In this paper, we develop a method to
test the stability of a matrix transfer function in which
D2 (s) and D, (s) may not be coprime.

1  I Performing the following block transformation:
'q = T (23a)

1 1 where

13 = block diag. ( 1.,1m,jlm,... ) (23b)

G2  0 ,k-hks 0sh on eqn. 19 gives

6 = TG 2 T;co+T3E2r= G3w+E3r (24a)

L 0 0Y = F2TWW = F3 o (24b)

where
0 0

0 0 M, -iN 1 . Om Om

0 0 22a) IN. M 2  0m A(y

• ~G3 = .

1 1 Om 0 m -Mn-j -IN.-,
/kA m32'2~' k _'zh2n O O0, IN.-, -M n

The input vector E2 and the output vector F2 are

E2=9T 0 0.0 0] (22b) E, LA'

OM

20 0.00] (22c)

[Tk L K0'

Om

Note that the process to evaluate the elements in T2  F, = [Li' 0 m 0 0]
and G2 involves only real numbers rather than complex m

...number,-as suggested -by TakahashietaL' and/ = I -1.

Now, consider the following quadratic equation:5 StailitW of atrix trasfer funcetions

When a multivariable system is represented by a matrix v = (25a)
transfer function, T(s)-D 2(s)D(s) - ', and the stability where
of the system is required to be determined, one often
converts this matrix transfer function into a high. = block ding. i'm , I,, Ima, I (25b)
dimensional state equation in general co-ordinates, and Since Pis positi.e definite, v is positive definite. When N.=
determines the scalar characteristic equation. The stability N in eqn. 24, the derivative of v is
of thi system is then determined either by directly apply-
Jog the Routh criterion" or application of Jury's inner ' c='[PG3 +G'Plw = -o'w (26a)
theory' on the scalar characteristic polynominal. However, w
it is tedious to determine a scalar characteristic polynomnsl where
ofa lar e-dlmensional system.Furthermore,when DI(s) and Q = 2 x block diag. ([R, ... ,Mn] (26b)
D2(s) are not coprime, the scalar polynomial obt~ined I
is rot the characteristic polynomial. Several authors and
have studied the stability of a multivariable system from = + Mf/2 1 = 12,... ,n (26c)
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If R, are real symmetric and positive-definite matrices, this function, but also the poles and zeros must alternate on the
implies that Q is positive definite and the v in eqn. 25 is a negative real axis in the s-plane. From above properties we
Lyapunov function. From Lyapunov theory2' we can con- are now able to synthesise a matrix transfer function,
clude that the system in eqn. 2 is asymptotically stable if T(s) = D2 (s)DI (s) in eqn. 2, without using integrators

(i) N, = Nj' and M, are real and positive definite and multiwinding transformers. The steps are described as
(ii)detA,I and detAI in eqn. 2 have the same sign, follows:

and are nonzero. Step I Construct m sets of independent one-port RC
mat be noet N ,,. m ay d real orimanary matrixcef ladder networks that contain any proper values of resistors
may be nonsymcretric. An 1 and Ai are the matrix coef- and capacitors. As a result, R, aid C( in Fig. 2 are positive-
ficients of the characteristic matrix polynomial D,(s) in definite diagonal matrices.
eqn. 2, therefore the detA,I is the leading coefficient of Step 2 Match the block elements in eqn. 16 and those of
s nm and detAI is the constant term in the scalar poly- M and N t in eqn. 19 to determine the diagonal matrices
nomial det[ DI (s)]. When D2(s) and D, (s) are coprime, the H, and N in eqn. 28 usingR and Ct.
det [D, (s)] is the characteristic polynomial of the system. Step 3 Substitute the obtained H5 and K into eqn. 11 to

The necessary condition for the stable system states that determine the matrix polynomials D *(s) and DI(s)

detA.., a:,d detA, should have the same sign. Even if having diagonal matrix coefficients.
D2(s) and D,(s) are not coprime, we have the same block Step 4 Subtract the matrix coefficients of the same
quotients K, and H1, or the block elements N, and MI; power in D,(s) and Dr*(s) to obtain the feedback block
however, the detA,., and detA, shall be replaced by gains and also the matrix coefficients in Di(s) and D2*(s)
det P,, and detP,.,r+,, which can be obtained from the to determine the feed-forward block gains in tho phase-
matrix coefficients of Di (s), D2 (s) and C(s) in ecn. 12 and variable block co-ordinates as shown in eqn. 3.
expressed as Step 5 Transform the above block gains from the

detP,, = det [Aa,+,C,'p-.] (27a) phase-variable block co-ordinates to the tridiagonal block
co.ordinates in eqn. 19 using the block transformations in

detPir+, = der [AICI-'] (27b) eqns. 6 and 18.
When rank T(s)(= k)isnot equal tomq,(or k = mq + r), Step 6 Sum up the feedback block gains using one block

the block-Routh array becomes an ill conditioned case. The summer, and. the feed-forward block gains using another
T(s) can be modified by adding another stable matrix, block summer.
T3(s)(= K/(s + ci) where K is a constant matrix with rank Thus, a matrix transfer function can be synthesised using
K = m - r and a is a positive value), to form a new transfer a state-space approach.
function matrix T*(s) such that rank T*(s) = m(q + 1).
Thus, the proposed method can be applied to determine the 6 Illustrative examples
block-Routh array and the stability of the system. When
k = mq and the ill conditioned case occurs, the T(s) is Exaple I
modified by multiplying a stable diagonal matrix with To illustrate the processes, we determine a block-
stable diagonal elements as (s + a)/(s + a), where 0 and a transformation matrix, a block-state equation in a block-
are positive values. Thus, the proposed method can be tridiagonal form, the stability, and the state-space realisation
avplied to determine the block-Routh array and the of the following driving-point impedance matrix that is
stability. It is noticed that the stability of a multivariable represented by a matrix transfer function:
system is invariant under such modifications. Y(s) = TOS) (29)

When the matrix transfer function is completely
decoupled such that A, and B, in eqn. 2 are diagonal where
matrices, then the recursive algorithm in eqn. 20 can be TQ) =
further simplified as

M,= (H2 5K2 .) -  i 1,2,. . n (28a) = [D 21s+D22](D1s 2 +D, 2s+D13f-

N, = (K2 j1+H2 K2j 1 )" i = 1, 2,.. ,n- I = [ 1' -21s( 24 10\j
(28b) -2 5 22 O

where H, K,, M, and N are diagonal matrices.
If detP11 and detP, ,+I in eqn. 27 have the same sign [(1 o (165 68,(14 6

and the pairs {H2 K2-I} are positive- definite, then the x s12+ 13+
system in eqn. 2 is asymptotically stable. Furthermore, if 0 1 68 35 18 8
all K, and H, are positive definite, then the system Is not
only asymptotically stable, but also the poles and zeros of Note that D(s) and D,(s) are not symmetric matrix poly-
each transfer function y5(s)/R,(s) interlace on the negative nomals. The procedures can be shown in the following
real axis of the s-plane. This can be verified as follows. Each steps:
transfer function yg(s)/RI(s) can be considered as a driving.
point impedance function. Comparing G3 in eqn. 22a ep I Construct the block-state equation in the block
and the Go in eqn. 16, we can solve the positive values companion form
of R and C1. The network realisation of the impedance Ax + Br (30a)
function is an RC-type ladder network" as shown in
Fig. 2. Therefore, the y,(s)/R,(s) is not only a positive real y - Cx
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where Step 3 Establish the block transformatiun T, in eqn. 7

_F(0 0) (1 0 )=1l 
(30c)

0 2 0 8 0 6 ) w here

[-D 13  12 1 L(14 6/ (165 68 T= [D4 02 4 2 0 0

[) 1D22 D21  - 24 10) 1 -2

r 02 ( 022 
10 2 5

12 =1 0 Step 4 The required block-state equation in eqn. 8 is

(0i= Glz +-Elr y = FIz (30d)

where

C = 2 D 1 24 10) 1-2 5)1 f , . ,-(H4K ,f K; ,

[D22 0 - = [( 1 (H2K,).l -(H2K)_1]

Step'2 Construct the block-Routh array to determine [ (140 130) (58 24)
the block quotients. The block-Routh array is 58 54 24 10

Du =(0 0) /165 68) \

=01 68 351 -) _I-2

(18 8/- \ /2(00E~F ] \ 0)
D21 = (1 -) D22 = (24 io) 102 0 0)J

\ -\522 0/ K Tl 1 - 2)

DS, = D 12 -KtD 22 = - 2 5

D =D, =(114 6) F 1  [02  12] ))]

18 8) Step 5 Evaluate Mi and N4 in eqn. 20 to determine the

stability. For the use of multiport network synthesis, we

D4t = D22 -H2D = (1 2) choose
(212D22=24 10)(2

Ds= (30b) Thus, we solve M, N and L as
22 10

where MI = LI(H 2KI)'L -1 1 = ( 2 5

KI = ( I Dil i /

N1 = IL(K3H 2K,) -L-I 11=(/2 )H!2 = DzID3- (: 1 = -ttK = 05.5 -315 ),

(0 1 L2~i = 2"I3 - --
2 "5 67

K D D (-6 14.5) _ 167 67)
M2 = L,(H4K3')Lj 1  167 27

( 06 -02)
114 = D = -02 0-4 Since detDII(= 1) >0, detD, 3 (=4) >0, N =N, and

MI and M2 are real, symmetric and positive definite, the
Since we have 2n(= 4) block quotients and the block- system is asymptotically stable. It is interesting to note
Routh array terminates normally, D2(S) and DI (s) are right that the poles of this multivariable system or the roots
coprlme. of det[D(s)] are s, =-002739, a =-0127864,
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s - 5.88774 and s4 - 193,957. The transmission zeros and C1. The network configuration is shown in Fig. 3. For
of this multivariable system or the roots of det [D2(s)] are this RC driving-point impedance matrix, the matrix
s, -0-10315 and:$2 = -193-89685. Cauchy index due to Bitmead and Anderson" 8 can be

Step 6 Compare the respective E2 and G2 in eqn. 19 and applied to determine the number of negative real roots and
the Eo and Go in eqn. 16 to solve R, and C,. the stability.

1- 12 R 21 c 1-12  C1 12 ,R'C1 ; 1 /2  It is noticed that, in determidning the stability of a
Go 2 + 1 transfer function matrix, the N, may be real or imaginary

o C 22R IC " 12 -3 2(Ri1 +Rj')C=- 1 1 J matrices. For example, if we use the same K, (defined
[-M1  Nt G as Kl*) and H2 (defined as H2*) in eqn. 30b, and assign

3f K )=-K and (def=-H 4 , we have the sameLn. 3Li),
N, -M 2  Ml*(= MI), and M2 (= M2 ) as shown in eqn. 30e. Also, we

Ce -/
2 1 [L .]have the imaginary matrices L2(=iL2) and N(=jN,).

Eo  0 L,K =E2 Substituting Kj* and Hj* into eqn. 11 gives the transfer02 L 02 function matrix T*(s) as

From eqn. 30f, we have ( 2,T*(s) = D*sD*s-
L, Ki"' = KC, K K1 = [D2:s + D 2 [D71s' +Dr02s+D1*31- 1

1/2,R'" -R I q 120 ) 1 ( 2 )$124 10)]
CiiiC , =M1 _WR2 ( 1 -- 5 \22 10

6= N 14-5 X ( [( 1 s+ (165 68, +(34 141]-'

( 2 -1 1 \ 68 35) \26 121]

2= M2 +R3 = (- I (30g)

The structure of the multiport network is shown in Fig. 2. Since
Multiwinding transformers may be used to realise the R det Dl,(= 1) > 0, def DI3(= 44) > 0,

- Nj" = N'(= IN, =IN,')
,I I[ and both M1 (=Ml) and M,(=M2 ) are real and positive

definite, then T*(s) is asymptotically stable. It might
ZqI a . - o 1. be interesting to know the distribution of the roots of

1[ct Dj(s). The roots are
1 . I_ s, = -0"197735 +i0-160018,

.= 1C CI ' . *, ,2 = -0197735 -0160018,
[0-9238 0-3826C, [S 2l-D {.24 o, ] s1, = - 5-767861 and s4 =-1938367.

1,|0.38M6.1 -0-92 a 2 0 0-17! From the roots we observe that there exists a pair of
Z- R, = ,0 complex poles in T*(s) and T*(s) is not an RC positive real

-NT 1, - so, matrix. Of course, the system matrix G2 in eqn. 19 is a

, 9239 0-327] . [25 -67 symmetric but not real matrix..to.,,,, .. [,.1014,
0-3827 -093 61 = 6912 rnlZ, -$ 92r -JO, Determine the pair of coprime matrix polynomials (Pt(s)

WoP-5257 0.,507,-,._ 21 [_o 3S22 o 1] and P,(s)), the common matrix polynomial C(s) in eqn. 12,
LO-so7 -o.ss7J ' - 0.D [ 1 and the stability of the following matrix transfer function:

R.3 RfeniaonofZcO()in bsxample) YO) = (s)RO) (31)

where

T(:) = D2(s)D,() -' = [p(1)C(s)]J[Pt(S)C(:)]' - [D21S2 +D2s+Di][D ,2
3 +D 2  +D 3S+D 41-'

_ -)52+(-333 338,(338 f72

4 3 -141 1471 146 74)

(2  l)J3+(-1945  1983\S +(1815 1177\+ 1169 86 - 1

10 1 -811 826 753 492) k 73 3

n=3 and m=2.
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The block-Routh array is and

-1 1 1945 1983) P2 (s) P2 P22P

S-811 826 74+ (3 2e)1815 117 86--76 178 0

D13 =  D14 =  ( Letting L, =12 and substituting K, and H, into eqn. 20\753 492/ 73 37) gives

-1 D~ ( - 3 D3 =
W M1 -24 3 -141 147) -- 2 5

(338 172)
D2 3  N (3 2) [146 124)\146 74) N1  and Al2 =1

(2 3 \124 106/

D3 (2 -1) D32 167 169) Since the detPn,(=O.I) and detP13(=0-25) have *the(_ 3 69 741 same sign, N, =)VN', and M, and M2 are real and positive

8definite, the system is asymptotically stable. It is interesting
169 16) to note that the poles of this multivariable system

D33  ( are s, =-0.08561, s2 =-0.1927, s3 =-6.020 and
\73 37 $4 = -251"7. The transmission zeros that are the roots

of det [P2 (s)] are s = - 0.3975 and s2 = - 251,6025. The
1-166 169 D (169 86) det[D1 (s)J(=detP1(s)detC(s)) that consists of unstable

D4 = D42 
=  73 37eigenvalues is not the characteristic polynomial of this

multivariable system.

-332 338 (338 172) 7 Concusion
D144 146 146 74 A new block-Routh array with the block-Routh lgorit!hm

has been developed to extract the greatest common matrix

D61 =  (32a) coprime, and to construct a block.transformation matrix
D ( 10) that transforms a block-state equation from a block.

where companion form to a block-tridiagonal form. The newly
developed block-state equations are the minimal realisations

5 2) (1 0) of. matrix transfer functions. A driving-point impedance
K, = (22 1 matrix has been synthesised using the structure of multi.

port RC ladder network using the block-state-equation

148 -344 (0.5 0\ approaches. As a result, the extension of synthesising
IK3 =  /4 (0.=  matrix transfer functions without using integrators Is

3 -152 3.56) 0 0 (32b) possible. Finally, a stability criterion baed on Lyapunov
theory has been derived for the test of the stability of a

Because all block elements in the sixth row are null matrices, class of matrix transfer functions.
the block-Routh array terminates prematurely. The greatest Since we have claimed that the matrix results obtained
common matrix polynomial C(s) is in this paper are new, it might be interesting to adjust our

C(s) = s25 + C = Dss + D52  results from the matrix cases to the scalar cases which are
not well known. For single-variable systems, we believe

/-332 338 s+(338 172) that the simple transformation matrix, which transforms a
s + (32c) state equation from a scalar companion form to a scalar

\-144 146) \146 74/ tridiagonal form by directly using the elements in the
It is interesting to notice that the scalar polyhomials, newly developed array, is new. Also, we believe that
det [C(s)] = 200 x (02 + 3 - 0.5), is unstable. Using the the derived stability criterion for the transfer function
KandHi in eqn. 32b and applying the algorithm in eqn, 13 d2 (s)/di(s) (in which di(s) might have both stable real
yields the coprime matrix polynomials a and stable complex roots and d2(s) might not be the

derivative of d, (s)), is new.
P,(s) = P113

2 +P12 ls+P1 On the other hand, in converting the known scalar results
to the matrix c-..ws, the following simple fact should

(2.18 - 504 (5"74 .0.28 be noticed: the product of two real symmetric, and
S+ 2-7 positive- (or negative-) definite matrices (which are often

0-72 -1 124 2 considered as a natural generalisation of positive (or negative)
numbers26 ), often results in a nonsymmetric matrix,and the

* (0. O\ poduct of two nonsymmetric matrices may result in a
+ (32d) symmetric matrix. For example, the scalar elements di,, in

O 0 the first column of the array which is the counterpart of
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the block-Routh array are positive (or negative) real values. 5 MAROULAS, J., and BARNETT, S.: 'Canonical forms for time-
It is not always true that the block elements D, I in the first invariant linear control systems', Int. J. Syst. Sel., 1978, 9,
column of the block-Routh array must be symmetric and op. 497-514
positive. (or negative.) definite matrices unless the function 6 TAKAHASHI, T., HAMADA, N., and TAKAHASHI, S.I.: 'Av (state-space realisation for transfer functions', IEEE Trans., 1978,
of interest is a special one. This can be verified from the CAS-25. pp. 79-88
block elements D(,, in Example 2. The above facts imply 7 CHEN, C.F., and CHU, H.: 'A matrix for evaluating Schwarz's
that the extension of the known scalar resulis to the matrix form', Ibid., 1966, AC-11, pp. 303-305

8 BARNETT, S., and STOREY, C.: 'The Lyapunov matix equation
results is not always straightforward. and Schwarz's form', ibid., 1967, AC-12, pp. 117-118

Finally, it might be interesting to compare the advantages 9 LOO, S.G.: 'A simplified proof of a transformation matrix
and disadvantages of the present block-Routh array and the relating the companion matrix and the Schwarz matrix', Ibid.,
matrix-Routh array." We observe that both arrays use 1968, AC-13, pp. 309-310
similar algorithms but different processes. Therefore, both 10 POWER, H.M.: 'Canonical form for the matrices of linear

discrete-time systems', Proc. /EE, 1969, 116, (7), pp. 1245-Routh arrays might have numerically.ill-conditioned cases. 1252
Also, we observe that the process in the block-Routh array ±2 SHIEH, L.S., SHIl, C.D., and YATES, R.E.: 'Some sufficient
is more complicated than that of the matrix-Routh array, and some necessary conditions for the stability of multivarlable
However, the simple and new block-transformation matix systems', ASME J. Dyn. Syst. Meas. and Contr., 1978,pp. 214-218
that transforms a block-state equation from a block- 12 SHIEH, L.S., and GAUDIANO, F.F.: 'Some properties and
companion form to a new block-tridiagonal form of a application of matrix-continued fraction', IEEE Thins., 1975,
matrix transfer function can be directly formulated from CAS.22, pp. 721-728
the block-Routh array but not from the matrix.Routh 13 NEWCOMB, R.W.: 'Linear multiport synthesis' (McGraw-Hill,
array. As a result, many applications to circuits and systems 1New York, 1966)

14 COOK, M.P., and SHIEH, L.S.: 'A multiport network synthesis
have been developed from the new block-tridiagonal matrix using a matrix-continued fraction', Int. i. Electron., 1977, 43,
that consists of the block quotients obtained from the pp. 449-459
block-Routh array. Furthermore, the structures of the IS ANDERSON, B.D.O., and VONGPANITLERD, S.: 'Network
system matrix, input vector and output vector of the analysis and synthesis'(Prentice-Hail, New Jersey, 1973)
controllable and observable state equations oblained from 16 FRAME, J.S.: 'Matrix functions and applications', IEEE Spec-

elsof the state 7rum, 1964, pp. 102-108
the blockRouth array are simpler than those17 ROUTH, EJ.: 'A treatise on the stability of a given state of
equations obtained from the matrix-Routh array. We motion' (MacMian and Co. Ltd., London, 1877)
believe that more applications to circuits and systems can 18 PAPACONSTANTINOU, C.: 'Test for the stability of polynomial
be generated from the present dynamic state equations. mattices',Proc. lEE, 1975 122, (3), pp. 312-314

One shortcoming of the method presented is that no 19 ANDERSON, B.D.O., and BITMEAD, R.E.: 'Stability of matrix
polynonials', Int. . Control, 1977, 26, pp. 235-247

precise criterion is offered to ensure the existence of the 20 DENMAN,E.D.: 'Matrix polynomials, roots and spectral factors',
block-Routh algorithm although some remedial methods Appl. Math. & Camp., 1977,3, pp. 359-368
have been suggested to overcome the ill-conditioned cases. 21 LIAPUNOV, A.M.: 'Stabil v of motion' (Academic Press, Inc.,
When an ill-conditioned case occurs, other algorithms, for New York, 1966)
example, the elementary operation methods' and the Euler 22 VAN VALKENBURG, M.E.: 'Network arodysis' (Prentice-Hall,examletheelemntay oeraton ethd' ad te Eler New Jersey, 1974)
continued fraction method," are more effective in obtaining 23 WALL, H.S.: 'Analytic theory of continued fractions' (Chelsea,
the greatest common matrix polynomial, determining New York, 1967)
whether two matrix polynomials are coprime, and checking 24 GILBERT, E.G.: 'Controllability and observability in multi-
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Corrections to "Analysis and Synthesis of Matrix Transfer Functions

Using the New Block-State Equations in Block-Tridiagonal Forms."

L. S. Shieh and A. Tajvari

1) p. 19 (left-hand column)

The phrase in the 9tn and 10th lines of section 1 should read: where y(t)
is an mxl output vector, r(t) is an mxl input vector, and x0(t) is an mxl
state vector.

2) p. 20

The block element (H2K3)'1 in Gl in Eq. (8c) should read: (H2KI)- 1 .

3) p. 23 (right-hand column)

Delete sentences from the 7th line to the llth line.

4) p. 26 (right-hand column)

The sentence in the 7th line from the bottom of the right-hand column
should read: Since P is positive definite and Ni are assumed to be ima-
ginary matrices, v is positive definite.

5) p. 27 (left-hand column)

The sentence in the 8th column should read: It is noticed that Ni are
imaginary matrices;

6) p. 27 (left-hand column)

The following should be inserted between the 21st and 20th lines from the
bottom of the lower left-hand column: An additiona', sufficient condition
is that, if both Ni and Mi are real symmetric matrices and G2 in Eq. (19)
is a real symmetric negative definite matrix, then the system in Eq. (2)
is asymptotically stable. This sufficient condition can be verified from
the fact that all eigenvalues of a real, symmetric, negative-definite,
system matrix G in Eq. (19) are negative real.

7) p. 27 (left-hand column)

A phrase is inserted in the 12th and l1th lines from the bottom to read:
aid the pairs {H~iKI.l} are positive definite and the pairs {(K2i+iH2i

K2i-1 )-lI 2} are maginary matrices,

8) p. 27 (left-hand column)
A phrase is inserted in the 10th and 9th lines from the bottom to read:

all Ki and Hi are positive definite and G2 in Eq. (19) is a real symmetric
negative definite matrix,

9) p. 28 (ri,it-hand column)

A phrase is inserted in the 4th and 3rd lines from the bottom to read;
M and M are re&i symmetric and G2<0 in Eq. (19),

10) p. 30 (ri ght-hand column) .

phrase is inserted in the 9th and 10th lines to read: same sign, NI=N1 ,
and M and M are real and symmetric and G2<0 in Eq. (19),

------ _- - -



J Computer-Aided Methods for Redesigning the Stabilized Pitch Control System

of a Semi-Active Terminal Homing Missile

1 12 2I L. S. ShiehI , M. Datta-Barua I , R. R. Yates and J. P. Leonard

I
I ABSTRACT

I An unstable pitch control system of a termina* homing missile was formerly

stabilized using a high order stabilization filter that was realized using active

I elements. A new dominant-data matching method is presented to redesign the high-

i order stabilization filter for obtaining reduced-order filters. As a result, the

implementation cost is reduced and the reliability increased. An algebraic method

I is also applied to improve the performance of the redesigned pitch control system.

In addition, the proposed dominant-data matching method can be applied to determine

I a reduced-order model of a high-order system. Unlike most existing model reduction

metnods, the reduced-order model has the exact assigned frequency-domain specifica-

tions of the original system. Computer-aided design methods can also be applied

Ito design general control systems.
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A Geometric Series Approach for Approxdmation of

Transition Matrices in Quadratic Synthesis

Leang S. Shieh, Willon B. Wai, 1 R. E. Yates
2

Abstract

A geometric-series approach is used to approximate the exponentials of

Hamiltonian matrices for quadratic synthesis prob>Tms. The approximants of the

discretized transition matrices are then used to construct piecewise-constant

gains and piecewise-time varying gains for approximating a time-varying optimal

gain and a time-varying Kalman gain. The proposed method is more accurate and

computationally faster than those existing methods which use the Walsh function

approach and the block-pulse fuDction approach.
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